1、第一章 3.2 第二课时 (本栏目内容,在学生用书中以活页形式分册装订!)一、选择题(每小题5分,共20分)1数列9,99,999,9 999的前n项和等于()A10n1B.(10n1)nC.(10n1) D.(10n1)n解析:an10n1Sna1a2an(101)(1021)(10n1)(1010210n)nn.答案:B2数列1,的前n项和Sn等于()A. B.C. D.解析:an2,所以Sn22.答案:B3已知数列an的通项an2n1,由bn所确定的数列bn的前n项之和是()An(n2) B.n(n4)C.n(n5) D.n(n7)解析:a1a2an(2n4)n22n.bnn2,bn的前
2、n项和Sn.答案:C4设数列1,(12),(124),(12222n1)的前m项和为2 036,则m的值为()A8 B9C10 D11解析:an2n1,Sn2n1n2,代入选项检验,即得m10.答案:C二、填空题(每小题5分,共10分)5在数列an中,a11,a22,且an2an1(1)n(nN),则S100_.解析:当n为奇数时,an2an0,故奇数项为常数列1当n为偶数时,an2an2,故偶数项为等差数列S1005012 600.答案:26006若数列an的通项公式an,则前n项和Sn_.解析:anSn().答案:三、解答题(每小题10分,共20分)7已知数列an前n项和为Sn,且Sn14
3、an2,a11,设bnan12an,求数列bn的前n项和Tn.解析:Sn14an2,Sn24an12, 得Sn2Sn14(an1an),即an24(an1an),变形为:an22an12(an12an)又bnan12an,上式可化为bn12bn,数列bn是公比为2的等比数列S2a1a24a12,a11,a25.b1a22a13,数列bn的通项是bn32n1.Tn3(2n1)8设数列an的前n项和Sn(1)n(2n24n1)1.(1)求数列an的通项公式an;(2)记bn,求数列bn前n项和Tn.解析:(1)数列an的前n项之和Sn(1)n(2n24n1)1,当n1时,a1S1(1)1(241)
4、18;当n2时,anSnSn1(1)n(2n24n1)(1)n12(n1)24(n1)1(1)n4n(n1),当n1时,a18满足an(1)n4n(n1),故所求数列an通项an(1)n4n(n1)(2)bn,数列bn的前n项和Tn.9(10分)设数列an为等比数列,Tnna1(n1)a22an1an,已知T11,T24.(1)求数列an的首项和公比;(2)求数列Tn的通项公式解析:(1)设等比数列an的公比为q,Tnna1(n1)a22an1an,得q2.故首项a11,公比q2.(2)方法一:由(1)知a11,q2,ana1qn12n1.Tnn1(n1)222n22n1,2Tnn2(n1)2222n112n, 由得Tnn2222n12nnn2n12(n2)2n1.方法二:设Sna1a2an,由(1)知an2n1,Tnna1(n1)a22an1ana1(a1a2)(a1a2an1an)S1S2S3Sn(21)(221)(2n1)(2222n)nn(n2)2n1. .精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u