收藏 分享(赏)

广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc

上传人:高**** 文档编号:474627 上传时间:2024-05-28 格式:DOC 页数:9 大小:110.50KB
下载 相关 举报
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第1页
第1页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第2页
第2页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第3页
第3页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第4页
第4页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第5页
第5页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第6页
第6页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第7页
第7页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第8页
第8页 / 共9页
广东省揭阳市第三中学人教版高中数学必修三教案:1-3算法案例 (1) .doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、揭阳第三中学教案表 课题1.3 算法案例(1)课型新授课教学目标1理解算法案例的算法步骤和程序框图. 来源:Z。xx。k.Com2引导学生得出自己设计的算法程序.3. 体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.重点难点重点:引导学生得出自己设计的算法步骤、程序框图和算法程序.难点:体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.教具准备多媒体课件课时安排1课时教学过程与教学内容教学方法、教学手段与学法、学情一、情境导入 大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处

2、理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来. 当两个数公有的质因数较大时(如8 251与6 105),使用上述方法求最大公约数就比较困难.下面我们介绍两种不同的算法辗转相除法与更相减损术,由此可以体会东、西方文化的差异.来源:学科网二、新知探究 提出问题(1)怎样用短除法求最大公约数?(2)怎样用穷举法(也叫枚举法)求最大公约数?(3)怎样用辗转相除法求最大公约数?(4)怎样用更相减损术求最大公约数?讨论结果:(1)短除法 求两个正整数的最大公约数的步骤:先用两个数公有的质因数连

3、续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来.(2)穷举法(也叫枚举法) 穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数.(3)辗转相除法 辗转相除法求两个数的最大公约数,其算法步骤可以描述如下: 第一步,给定两个正整数m,n. 第二步,求余数r:计算m除以n,将所得余数存放到变量r中. 第三步,更新被除数和余数:m=n,n=r. 第四步,判断余数r是否为0.若余数为0,则输出结果;否则转向第二步继续循环执行. 如此循环,直到得到结果为止. 这种算法是由欧几里得在公元前300年左右首先提出

4、的,因而又叫欧几里得算法.(4)更相减损术 我国早期也有解决求最大公约数问题的算法,就是更相减损术. 九章算术是中国古代的数学专著,其中的“更相减损术”也可以用来求两个数的最大公约数,即“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之.”翻译为现代语言如下: 第一步,任意给定两个正整数,判断它们是否都是偶数,若是,用2约简;若不是,执行第二步. 第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.应用示例例1 用辗转相除法求8 251与6

5、 105的最大公约数,写出算法分析,画出程序框图,写出算法程序.解:用两数中较大的数除以较小的数,求得商和余数:8 251=6 1051+2 146.由此可得,6 105与2 146的公约数也是8 251与6 105的公约数,反过来,8 251与6 105的公约数也是6 105与2 146的公约数,所以它们的最大公约数相等.对6 105与2 146重复上述步骤:6 105=2 1462+1 813.同理,2 146与1 813的最大公约数也是6 105与2 146的最大公约数.继续重复上述步骤:2 146=1 8131+333,1 813=3335+148,333=1482+37,148=37

6、4. 最后的除数37是148和37的最大公约数,也就是8 251与6 105的最大公约数. 这就是辗转相除法.由除法的性质可以知道,对于任意两个正整数,上述除法步骤总可以在有限步之后完成,从而总可以用辗转相除法求出两个正整数的最大公约数.算法分析:从上面的例子可以看出,辗转相除法中包含重复操作的步骤,因此可以用循环结构来构造算法.算法步骤如下:第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数为r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.程序框图如右图:程序:INPUT m,nDO r=m MOD n m=n n=rLOOP UNTIL

7、 r=0PRINT mEND点评:从教学实践看,有些学生不能理解算法中的转化过程,例如:求8 251与6 105的最大公约数,为什么可以转化为求6 105与2 146的公约数.因为8 251=6 1051+2 146,可以化为8 251-6 1051=2 164,所以公约数能够整除等式两边的数,即6 105与2 146的公约数也是8 251与6 105的公约数.变式训练 你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.解:当型循环结构的程序框图如下图:程序:INPUT m,nr=1WHILE r0 r=m MOD n m=n n=rWENDPRINT mEND例2

8、 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,如下图所示.98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98和63的最大公约数等于7.点评:更相减损术与辗转相除法的比较:尽管两种算法分别来源于东、西方古代数学名著,但是二者的算理却是相似的,有异曲同工之妙主要区别在于辗转相除法进行的是除法运算,即辗转相除;而更相减损术进行的是减法运算,即辗转相减,但是实质都是一个不断的递归过程变式训练 用辗转相除法或者更相减损术求三个数324,243,135的最大公约数.解:324=243181,243=8130

9、,则324与243的最大公约数为81.又135=81154,81=54127,54=2720,则 81 与 135的最大公约数为27.所以,三个数324、243、135的最大公约数为27.另法:324243=81,24381=162,16281=81,则324与243的最大公约数为81.13581=54,8154=27,5427=27,则81与135的最大公约数为27.所以,三个数324、243.135的最大公约数为27.例3 (1)用辗转相除法求123和48的最大公约数.(2)用更相减损术求80和36的最大公约数.解:(1)辗转相除法求最大公约数的过程如下:12324827,4812721,

10、271216,21363,623+0,最后6能被3整除,得123和48的最大公约数为3.(2)我们将80作为大数,36作为小数,因为80和36都是偶数,要除公因数2.802=40,362=18.40和18都是偶数,要除公因数2.402=20,182=9.下面来求20与9的最大公约数,209=11,119=2,92=7,72=5,52=3,32=1,21=1,可得80和36的最大公约数为221=4.点评:对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等.变式训练 分别用辗转相除法和更相减损术求1 734,816的最大公约数解:辗转相除法:1 734=8162+

11、102,816=1028(余0),来源:Zxxk.Com1 734与816的最大公约数是102更相减损术:因为两数皆为偶数,首先除以2得到867,408,再求867与408的最大公约数867-408=459,459-408=51,408-51=357,357-51=306,306-51=255,255-51=204,204-51=153,153-51=102,102-51=51.1 734与816的最大公约数是512=102利用更相减损术可另解:1 734816918,918816102,816102714,714102612,612102510,510102408,408102306,306

12、102204,204102102.1 734与816的最大公约数是102知能训练 求319,377,116的最大公约数解:377=3191+58,319=585+29,58=292.377与319的最大公约数为29,再求29与116的最大公约数116=294.29与116的最大公约数为29.377,319,116的最大公约数为29.三、课堂小结来源:学科网ZXXK(1)用辗转相除法求最大公约数.(2)用更相减损术求最大公约数.思想方法:递归思想.四、布置作业分别用辗转相除法和更相减损术求261,319的最大公约数.来源:Z。xx。k.Com板书1.3 算法案例(1)一、辗转相除法二、更相减损术教学反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3