收藏 分享(赏)

山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc

上传人:高**** 文档编号:466917 上传时间:2024-05-28 格式:DOC 页数:22 大小:1.94MB
下载 相关 举报
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第1页
第1页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第2页
第2页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第3页
第3页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第4页
第4页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第5页
第5页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第6页
第6页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第7页
第7页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第8页
第8页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第9页
第9页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第10页
第10页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第11页
第11页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第12页
第12页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第13页
第13页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第14页
第14页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第15页
第15页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第16页
第16页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第17页
第17页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第18页
第18页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第19页
第19页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第20页
第20页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第21页
第21页 / 共22页
山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析).doc_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、山东省济宁市嘉祥一中2020届高三数学下学期第一次质量检测试题(含解析)一、选择题1.若全集,集合,则( )A. B. C. D. 【答案】D【解析】【分析】化简集合,再由交并补的定义,即可求解.【详解】,.故选:D【点睛】本题考查集合间的运算,属于基础题.2.复数满足,则( )A B. C. D. 【答案】D【解析】【分析】根据复数的运算法则,求得复数,即可得到复数的模,得到答案【详解】由题意,复数,解得,所以,故选D【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题3.已知向量,若,则实数的值为( )A. B

2、. C. D. 【答案】C【解析】【分析】根据向量共线坐标表示得方程,解得结果.【详解】因为,所以,选C.【点睛】本题考查向量共线,考查基本分析与求解能力,属基础题.4.函数的部分图象是( )A. B. C. D. 【答案】A【解析】【分析】根据奇偶性排除B,当时,排除CD,得到答案.【详解】, 为奇函数,排除B当时,恒成立,排除CD故答案选A【点睛】本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.5.“”是“,”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】把题设,进行化简,求出的范围,再根据充分必要条件

3、进行判断即可【详解】必要性:设,当时,所以,即;当时,所以,即.故或.充分性:取,当时,成立.答案选A【点睛】对于充分必要条件的判断的一般思路为:对于每一个命题进行化简,去伪存真,若最终判断问题为范围问题,则可简单记为:小范围推大范围成立;大范围推小范围不成立6.若,则的最小值为( )A. 6B. C. 3D. 【答案】C【解析】【分析】由得,从而,则,然后利用基本不等式即可求出最小值【详解】解:,且,当且仅当且即时,等号成立;故选:C【点睛】本题主要考查基本不等式的应用,考查对数的运算法则,利用基本不等式求最值时应注意“一正二定三相等”,注意“1”的代换,属于中档题7.已知圆与双曲线的渐近线

4、相切,则该双曲线的离心率是( )A. B. C. D. 【答案】C【解析】【分析】由双曲线方程,求得其一条渐近线的方程,再由圆,求得圆心为,半径,利用直线与圆相切,即可求得,得到答案【详解】由双曲线,可得其一条渐近线的方程为,即,又由圆,可得圆心,半径,则圆心到直线的距离为,则,可得,故选C【点睛】本题主要考查了双曲线的离心率的求解,以及直线与圆的位置关系的应用,着重考查了推理与运算能力,属于基础题8.已知正三棱锥的侧棱长为,底面边长为6,则该正三棱锥外接球的表面积是( )A. B. C. D. 【答案】D【解析】【分析】作出图形,在正三棱锥中,求得,进而得到三棱锥的高,再在直角三角形中,利用

5、勾股定理列出方程,求得球的半径,最后利用球的表面积公式,即可求解.【详解】如图所示,因为正三棱锥的侧棱长为,底面边长为6,则,所以三棱锥的高,又由球心到四个顶点距离相等,在直角三角形中,又由,即,解得,所以球的表面积为,故选D.【点睛】本题主要考查了三棱锥的外接球的表面积的计算,以及组合体的性质的应用,其中在直角三角形中,利用勾股定理列出方程求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.二、多项选择题9.已知均为实数,则下列命题正确的是( )A. 若,则B. 若,则C. 若则D. 若则【答案】BC【解析】【分析】根据不等式的性质判断即可【详解】解:若,则,

6、故A错;若,则,化简得,故B对;若,则,又,则,故C对;若,则,故D错;故选:BC【点睛】本题主要考查不等式的基本性质,常结合特值法解题,属于基础题10.已知是两个不重合的平面,是两条不重合的直线,则下列命题正确的是( )A. 若则B. 若则C. 若,则D. 若,则【答案】ACD【解析】【分析】由线面垂直的判定定理、面面平行的判定定理、线面平行的性质定理,以长方体为载体逐一分析即可得出结论【详解】解:若,则且使得,又,则,由线面垂直的判定定理得,故A对;若,如图,设,平面为平面,设平面为平面,则,故B错;垂直于同一条直线的两个平面平行,故C对;若,则,又,则,故D对;故选:ACD【点睛】本题主

7、要考查线面平行的性质定理、面面平行的判定定理以及线面垂直的判定定理,通常借助长方体为载体进行判断,属于基础题11.如图,在四边形ABCD中,ABCD,ABAD,AB=2AD=2DC,E为BC边上一点,且,F为AE的中点,则( )A. B. C. D. 【答案】ABC【解析】【分析】利用向量加法的三角形法则、数乘运算及平面向量基本定理进行解题【详解】解: ABCD,ABAD,AB=2AD=2DC,由向量加法的三角形法则得,A对;,又F为AE的中点,B对;,C对;,D错;故选:ABC【点睛】本题主要考查向量加法的三角形法则、数乘运算,考查平面向量基本定理,属于基础题12.已知函数是定义在R上的奇函

8、数,当时,则下列命题正确的是( )A. 当时,B. 函数有3个零点C. 的解集为D. ,都有【答案】BCD【解析】【分析】设,则,则由题意得,根据奇函数即可求出解析式,即可判断A选项,再根据解析式分类讨论即可判断B、C两个选项,对函数求导,得单调性,从而求出值域,进而判断D选项【详解】解:(1)当时,则由题意得, 函数是奇函数, ,且时,A错; ,(2)当时,由得,当时,由得, 函数有3个零点,B对;(3)当时,由得,当时,由得, 的解集为,C对;(4)当时,由得,由得,由得, 函数在上单调递减,在上单调递增,函数在上有最小值,且,又 当时,时,函数在上只有一个零点,当时,函数的值域为,由奇函

9、数的图象关于原点对称得函数在的值域为, 对,都有,D对;故选:BCD【点睛】本题主要考查奇函数的性质,考查已知奇函数一区间上的解析式,求其对称区间上解析式的方法,考查函数零点的定义及求法,以及根据导数符号判断函数单调性和求函数最值、求函数值域的方法,属于较难题三、填空题13.在ABC中,内角A,B,C的对边分别为,若,则_【答案】4【解析】【分析】由边化角得,化简得,又与余弦定理得,得,则,则,从而求出【详解】解:,由正弦定理得,又,由余弦定理得,为的内角,故答案为:4【点睛】本题主要考查利用正弦定理和余弦定理解三角形,考查同角的三角函数关系,属于基础题14.我国古代的天文学和数学著作周碑算经

10、中记载:一年有二十四个节气,每个节气唇(gu)长损益相同(暑是按照日影测定时刻的仪器,暑长即为所测量影子的长度),夏至、小署、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪是连续十二个节气,其日影子长依次成等差数列,经记录测算,夏至、处暑、霜降三个节气日影子长之和为16.5尺,这十二节气的所有日影子长之和为84尺,则夏至的日影子长为_尺.【答案】1.5【解析】【分析】由题意设此等差数列的公差为,则求出首项即可得到答案【详解】设此等差数列的公差为, 由题意即解得 所以夏至的日影子长为 故答案为【点睛】本题主要考查等差数列性质以及求和公式,解题的关键把文字叙述转化为数学等式,属于基础题

11、15.已知抛物线的焦点为F(4,0),过F作直线l交抛物线于M,N两点,则p=_,的最小值为_【答案】 (1). (2). 【解析】【分析】利用抛物线的定义可得,设直线的方程为,联立直线与抛物线方程消元,根据韦达定理和抛物线的的定义可得,代入到,再根据基本不等式求最值【详解】解: 抛物线的焦点为F(4,0), , 抛物线的方程为,设直线的方程为,设,由得,由抛物线的定义得,当且仅当即时,等号成立,故答案为:【点睛】本题主要考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题16.设函数在定义域(0,+)上是单调函数,若不等式对恒成立,则实数a的取值范围是_【答案】【解析】【分析】先利用

12、换元法求出,然后再用分离变量法,借助函数的单调性解决问题【详解】解:由题意可设,则,由得,对恒成立,令,则,由得,在上单调递减,在单调递增,故答案为:【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.【答案】()()【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:()解:由,及,得.由,及

13、余弦定理,得.()解:由(),可得,代入,得.由()知,A为钝角,所以.于是,故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.18.已知数列的前n项和,是等差数列,且.()求数列的通项公式;()令.求数列的前n项和.【答案】();()【解析】试题分析:(1)先由公式求出数列的通项公式;进而列方程组求数列的首项与公差,得数列的通项公式;(2)由(1

14、)可得,再利用“错位相减法”求数列的前项和.试题解析:(1)由题意知当时,当时,所以设数列的公差为,由,即,可解得,所以(2)由(1)知,又,得,两式作差,得所以考点 1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前项和.【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用“错位相减法”求数列的前项和,属于难题. “错位相减法”求数列的前项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);相减时注意最后一项 的符号;求和时注意项数别出错;最后结果一定不能忘记等式两边同时除以.19.

15、如图,三棱柱中,侧面,已知,点E是棱的中点(1)求证:平面ABC;(2)在棱CA上是否存在一点M,使得EM与平面所成角的正弦值为,若存在,求出的值;若不存在,请说明理由【答案】(1)见解析;(2)存在,或【解析】【分析】(1)利用余弦定理解得,结合勾股定理得到,证得侧面,继而可证平面ABC;(2)以B为原点,分别以,和的方向为x,y和z轴的正方向建立空间直角坐标系,假设存在点M,设,由EM与平面所成角的正弦值为,可求解.【详解】(1)由题意,因为,利用余弦定理,解得,又,侧面,又,AB,平面ABC,直线平面ABC(2)以B为原点,分别以,和的方向为x,y和z轴的正方向建立如图所示的空间直角坐标

16、系,则有,设平面的一个法向量为,令,则,假设存在点M,设,利用平面的一个法向量为,得即,或,或【点睛】本题考查了空间向量和立体几何综合问题,考查了学生逻辑推理,空间向量和数学运算能力,属于中档题.20.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如下表: 比例 学校等级学校A学校B学校C学校D学校E学校F学校G学校H优秀8%3%2%9%1%22%2%3%良好37%50%23%30%45%46%37%35%及格22%30%33%26%22%

17、17%23%38%不及格33%17%42%35%32%15%38%24%(1)从8所学校中随机选出一所学校,求该校为先进校的概率;(2)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(3)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)【答案】(1) ;(2)见解析; (3)S12=S22【解析】【分析】(1)统计出健康测试成绩达到良好及其以上的学校个数,即可得到先进校的概率;(2)根据表格可得:学生不及格率低于30%的学校有学校BFH三所, 所以X的取值为0,1,2,分别计算出概率即

18、可得到分布列;(3)考虑优秀的比例为随机变量Y,则良好及以下的比例之和为Z=1-Y,根据方差关系可得两个方差相等.【详解】解:( 1)8所学校中有ABEF四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40% , 所以从8所学校中随机取出一所学校,该校为先进校的概率为;(2)8所学校中,学生不及格率低于30%的学校有学校BFH三所,所以X的取值为0,1,2. 所以随机变量X的分布列为:X012P(3)设优秀的比例为随机变量Y,则良好及以下的比例之和为Z=1-Y,则,所以:S12=S22【点睛】此题考查简单的几何概率模型求概率,求分布列,以及方差关系的辨析,关键在于熟练掌握分布列的求法和

19、方差关系.21.已知椭圆C:.(1)求椭圆C的离心率;(2)设分别为椭圆C的左右顶点,点P在椭圆C上,直线AP,BP分别与直线相交于点M,N.当点P运动时,以M,N为直径的圆是否经过轴上的定点?试证明你的结论.【答案】(1)(2)以为直径的圆经过轴上的定点和,证明见解析【解析】【分析】(1)先将转化为,根据椭圆的性质得到,即可求出离心率.(2)根据椭圆方程求出,设,则,分别求出直线和的方程,再分别与相交于点 和,设以为直径的圆经过轴上的定点,则,即得,将代入得解得或,得出为直径的圆是过定点和.【详解】解:(1)由得,那么所以解得,所以离心率(2)由题可知,设,则直线的方程:令,得,从而点坐标为

20、直线的方程:令,得,从而点坐标为设以为直径的圆经过轴上的定点,则由得由式得,代入得解得或所以为直径的圆经过轴上的定点和.【点睛】本题考查已知椭圆的方程求离心率和证明椭圆中的定点问题,属于中档题.22.已知函数.(1)当时,求函数在的单调性;(2)当且时,求函数在上的最小值;(3)当时,有两个零点,且,求证:.【答案】(1)在上单调递增(2)(3)证明见解析【解析】【分析】(1)求得函数的导数,结合导数的符号,即可求得函数的单调性;(2)由,求得,分类讨论求得函数的单调性与极值,进而求得函数的最小值,得到答案.(3)由,根据题意,得到,两式相减,令,得到函数,利用导数求得函数的单调性与最值,即可

21、求解.【详解】(1)由题意,函数,则,又,在上单调递增.(2)由,则,(1)当时,此时图数在区间上单调递减,函数在处取得最小值,即;(2)当时,令,当时,即当,此时函数在区间上单调递减,函数在处取得最小值,即;综上所得.(3)证明:根据题意,是函数的两个零点,.两式相减,可得,即,则,.令,则.记,则.又,恒成立,故,即.可得,.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3