1、2.1数列的概念与简单表示法(1) 学习目标 1. 理解数列及其有关概念,了解数列和函数之间的关系; 2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式. 学习过程 一、课前准备(预习教材P28 P30 ,找出疑惑之处)复习1:函数,当x依次取1,2,3,时,其函数值有什么特点?复习2:函数y=7x+9,当x依次取1,2,3,时,其函数值有什么特点?二、新课导学 学习探究探究任务:数列的概念 数列的定义:按一定次序排列的一列数叫做数列. 数列的项:数列中的每一个数都叫做这个数列的项. 反思: 如果组成两个数列的数相同而排列次序
2、不同,那么它们是相同的数列?不相同 同一个数在数列中可以重复出现吗? 可以3. 数列的一般形式:,或简记为,其中是数列的第几项. 4. 数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.反思:所有数列都能写出其通项公式?不是一个数列的通项公式是唯一?不唯一数列与函数有关系吗?如果有关,是什么关系?数列可以看成以正整数集N*(或它的有限子集1,2,3,n)为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4)有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)
3、、 f(4),f(n),5数列的分类:1)根据数列项数的多少分有穷数列和无穷数列;2)根据数列中项的大小变化情况分为递增数列,递减数列,常数数列和摆动数列. 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数: 1,; 1, 0, 1, 0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数: ,; 1, 1, 1, 1;小结:要由数列的若干项写出数列的一个通项公式,只需观察分析数列中的项的构成规律,将项表示为项数的函数关系. 例2已知数列2,2,的通项公式为,求这个数列的第四项和第五项. 变式:已知数列,则5是它的第 项.小结:已知数列的通项公式,只要将数列中的项代
4、入通项公式,就可以求出项数和项. 动手试试练1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数: 1, , ; 1,2 .练2. 写出数列的第20项,第n1项. 三、总结提升 学习小结1. 对于比较简单的数列,会根据其前几项写出它的一个通项公式;2. 会用通项公式写出数列的任意一项. 知识拓展数列可以看作是定义域为正整数集的特殊函数. 思考:设1(n)那么等于( )A. B.C. D. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是( ).A. 数列中不能重复出现
5、同一个数B. 1,2,3,4与4,3,2,1是同一数列C. 1,1,1,1不是数列 D. 两个数列的每一项相同,则数列相同 2. 下列四个数中,哪个是数列中的一项( ).A. 380 B. 392 C. 321 D. 2323. 在横线上填上适当的数:3,8,15, ,35,48. 4.数列的第4项是 . 5. 写出数列,的一个通项公式 . 课后作业 1. 写出数列的前5项. 2. (1)写出数列,的一个通项公式为 . (2)已知数列, 那么3是这个数列的第 项.252.1数列的概念与简单表示法(1)参考答案 典型例题例1解: (1);(2) 变式: ;例2解:由,得,即,得,所以.,.变式: 21 动手试试练1.;练2. ; 知识拓展D. 1(1)= 学习评价 当堂检测1. D 2. A 3. 24 4. 1 5. 课后作业 1. 前5项是2,4,8,16,322. (1) (2). 25高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )