1、2013年高考物理考前回归教材之考前指导十四说明:本试题共12个题,14题每题7分,512题每题9分,共100分,考试时间90分钟1(2009福建)(1)现代科学技术的发展与材料科学、能源的开发密切相关,下列关于材料、能源的说法正确的是_(填选项前的编号)化石能源为清洁能源纳米材料的粒度在1100m之间半导体材料的导电性能介于金属导体和绝缘体之间液晶既有液体的流动性,又有光学性质的各向同性(2)一定质量的理想气体在某一过程中,外界对气体做功7.0104J,气体内能减少1.3105J,则此过程_(填选项前的编号)气体从外界吸收热量2.0105J气体向外界放出热量2.0105J气体从外界吸收热量2
2、.0104J气体向外界放出热量6.0104J答案(1)(2)解析(1)化石能源为非清洁能源;1nm109m;液晶既有液体的流动性,又有单晶体的各向异性(2)根据热力学第一定律,WQU,所以QUW1.3105J7.0104J2.0105J,即气体向外界放出热量2.0105J. 2开发利用太阳能,将会满足人类长期对大量能源的需求太阳能的光热转换是目前技术最为成熟、应用最广泛的形式太阳能热水器的构造示意图如右图所示,下方是像日光灯管似的集热管,由导热性能良好的材料制成,在黑色管的下方是一块光亮的铝合金反光板,做成凹凸一定的曲面(1)说明太阳能热水器哪些结构与其功能相适应,水箱为何安装在顶部而非下部?
3、(2)图中A是集热器,B是储水容器,在阳光直射下水将沿_时针方向流动,这是因为_C是辅助加热器,其作用是_请在右图中适当位置安上进水阀门和出水阀门,并说明选择位置的理由答案(1)见解析(2)顺,见解析解析(1)日光灯管似的集热管面积较大,便于吸收较多的太阳能;外有透明玻璃管,内有黑色管子,使阳光能直射入玻璃管而不易被反射;在黑色管和外面透明管间有空隙,并抽成真空,减少两管间因空气对流引起的热损失,减少热传导;集热管的下方是一块光亮的铝合金板子,做成凹凸一定的曲面,使周围及穿过管隙的阳光尽量聚焦在水管内,水箱安装在顶部而非下部,便于水的对流(2)集热器中的水被太阳光晒热后密度变小,受浮力作用沿管
4、向右上方运动;在阴天用电加热的方式使水温升高;在封闭的环形管道的左下方安上进水阀门,在贮水容器下方竖直管道上安出水阀门,可使热水流出,冷水得以补充 3为了测试某种安全阀在外界环境为一个大气压时,所能承受的最大内部压强某同学自行设计制作了一个简易的测试装置,该装置是一个装有电加热器和温度传感器的可密闭容器,测试过程可分为如下操作步骤()A记录密闭容器内空气的初始的温度t1B当安全阀开始漏气时,记录容器内空气的温度t2C用电加热器加热容器内的空气D将待测的安全阀安装在容器盖上E盖紧装有安全阀的容器盖,将一定量空气密闭在容器内(1)将每一步骤前的字母按正确的操作顺序填写:_;(2)若测得的温度分别为
5、t127,t287,已知大气压强为1.0105Pa,则测试结果是:这个安全阀能承受的最大内部压强是_ 答案(1)DEACB(2)1.2105Pa解析(1)实验步骤必须符合科学的实验方法本实验大致顺序为:封气体测初态测末态,据此步骤应为DEACB.(2)气体做等容变化,由查理定律,p2p11.2105Pa4(2009苏北四市2月)(1)如图甲所示,汽缸内封闭一定质量的某种理想气体,活塞通过滑轮和一重物连接并保持平衡,已知活塞距缸口0.2m,活塞面积为10cm2,大气压强为1.0105Pa,物重50N,活塞的质量及摩擦忽略不计缓慢升高环境温度,使活塞刚好升到缸口,封闭气体吸收了60J的热量,则封闭
6、气体的压强将_(填“增加”、“减小”或“不变”),气体内能变化量为_J.(2)若一定质量的理想气体分别按图乙所示的三种不同过程变化,其中表示等容变化的是_(填“ab”、“bc”或“cd”),该过程中气体的内能_(填“增加”、“减小”或“不变”)(3)一种油的密度为,摩尔质量为M,取体积为V的油慢慢滴出,可滴n滴将其中一滴滴在水面上形成面积为S的单分子油膜,则可推算出阿伏加德罗常数为_答案(1)不变50(2)ab增加(3)解析(1)活塞缓慢上升可认为处于平衡状态,对其进行受力分析可知气体压强不变气体做功WpShSh10J.由热力学第一定律WQU,得内能变化量为U50J.(2)ab延长线过原点,故
7、ab是等容变化理想气体的内能只与温度有关,所以温度升高,内能增加(3)一滴油的体积为V/n,设油分子的直径为d,有dS.油分子的体积V分,可解得NA.5已知金刚石的密度为3.5103kg/m3。现有一块体积为4.0108m3的一小块金刚石,它含有多少个碳原子?假如金刚石中的碳原子是紧挨在一起的,试估算碳原子的直径?答案7.01021个,2.21010m解析这块金刚石的质量,根据mV3.51034.01081.4104(kg)这些碳原子的摩尔数n(M为碳的摩尔质量)n1.17102(mol)这块金刚石所含的碳原子数nnNAnnNA1.171026.021023个7.01021个一个碳原子的体积为
8、V0V05.71030(m3)把金刚石中的碳原子看成球体,则由公式V0d3可得碳原子直径为d2.21010(m)6如图:一定质量的理想气体由状态A经状态B变为状态C,其中AB过程为等容变化,BC过程为等压变化已知TATC400K.(1)求气体在状态B时的温度;(2)说明AB过程压强变化的微观原因;(3)设AB过程气体放出热量Q1,BC过程气体吸收热量Q2,比较Q1、Q2的大小并说明原因 答案(1)300K(2)见解析(3)见解析解析(1)设气体在B状态时的温度为TB,由题图可知VC0.4m3、VB0.3m3,再由盖吕萨克定律得,代入数据得TB300K.(2)微观原因:气体体积不变,分子密集程度
9、不变,温度降低,气体分子平均动能减小,导致气体压强减小(3)Q1小于Q2;因为TATC,故AB减小的内能与BC增加的内能相同,而BC过程气体对外做正功,AB过程气体不做功,由热力学第一定律可知Q1小于Q2.7某学校研究性学习小组想估算教室内空气分子个数及早晨同中午教室内空气多少的变化情况通过查阅资料知道当时当地的大气压强为一个标准大气压,空气的平均摩尔质量M2.9102kg/mol,阿伏加德罗常数NA6.01023个/mol.摩尔体积是22.4L/mol.另外,用温度计测出早晨教室内的温度是0,中午教室内的温度是7.(1)根据上述几个物理量能估算出教室内空气的分子数吗?若能,请说明理由;若不能
10、,也请说明理由;(2)根据上述几个物理量能否估算出中午跑到教室外的空气是早晨教室内的空气的几分之几?答案(1)不能因为不知道教室的具体容积(2)解析(1)不能,因为不知道教室的具体容积(2)可认为中午同早晨教室内的压强不变,根据等压变化规律有设想由于温度的升高,跑出空气的体积为V,即V2V1V所以.8(2009海南)()下列说法正确的是_A气体的内能是分子热运动的动能和分子间的势能之和;B气体的温度变化时,其分子平均动能和分子间势能也随之改变;C功可以全部转化为热,但热量不能全部转化为功;D热量能够自发地从高温物体传递到低温物体,但不能自发地从低温物体传递到高温物体;E一定量的气体,在体积不变
11、时,分子每秒平均碰撞次数随着温度降低而减小;F一定量的气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加()一气象探测气球,在充有压强为1.00 atm(即76.0 cmHg)、温度为27.0的氦气时,体积为3.50m3.在上升至海拔6.50 km高空的过程中,气球内氦气压强逐渐减小到此高度上的大气压36.0 cmHg,气球内部因启动一持续加热过程而维持其温度不变此后停止加热,保持高度不变已知在这一海拔高度气温为48.0.求:(1)氦气在停止加热前的体积; (2)氦气在停止加热较长一段时间后的体积答案()ADEF()(1)7.39(2)5. 54解析()ADEF()(1)
12、在气球上升至海拔6.50 km高空的过程中,气球内氦气经历等温过程根据玻意耳马略特定律有p1V1p2V2 式中,p176.0 cmHg,V13.50 m3,p236.0 cmHg,V2是在此等温过程末氦气的体积由式得V27.39m3(2)在停止加热较长一段时间后,氦气的温度逐渐从T1300K下降到与外界气体温度相同,即T2225K.这是一等压过程,根据盖吕萨克定律有式中,V3是在此等压过程中末氦气的体积由式得V35.54 m39(2009青岛一检)如图所示,教室内用截面积为0.2m2的绝热活塞,将一定质量的理想气体封闭在圆柱形汽缸内,活塞与汽缸之间无摩擦a状态是汽缸放在冰水混合物中气体达到的平
13、衡状态,活塞离汽缸底部的高度为0.6m;b状态是汽缸从容器中移出后达到的平衡状态,活塞离汽缸底部的高度为0.65m.设室内大气压强始终保持1.0105Pa,忽略活塞质量(1)求教室内的温度;(2)若气体从a状态变化到b状态的过程中,内能增加了560J,求此过程中气体吸收的热量答案(1)295.75K(2)1560J解析(1)由题意知气体是等压变化,设教室内温度为T2由知T2295.75(K)(2)气体对外界做功为Wp0S(h2h1)103(J)由热力学第一定律得Q1560(J)10(2009江苏六校联考)(1)将1cm3的油酸溶于酒精,制成200cm3的油酸酒精溶液已知1cm3溶液有50滴,现
14、取其1滴,将它滴在水面上,随着酒精溶于水,油酸在水面上形成一单分子薄层,则每滴溶液中含纯油酸的体积为_现已测得这个薄层的面积为S0.2m2,试估算油酸分子的直径d_.(2)一定质量的理想气体由状态A变到状态B的pT图线如图所示,可知在由A到B的过程中正确的是_ A气体分子的平均动能增大B气体分子间的平均距离增大 C气体的压强增大,体积减小D气体一定吸收热量(3)分别以p、V、T表示理想气体的压强、体积、温度,一定质量的理想气体,其初始状态表示为(p0、V0、T0)若从状态(p0、V0、T0)开始,既不吸热也不放热,变为状态(p1、V1、T1),如果V1V0,则气体内能如何变化?T0与T1大小关
15、系如何?答案(1)1104cm351010m(2)A、B、D(3)内能增加T0T1解析(1)每滴溶液中含纯油酸的体积为V1/(20050)cm31104cm3,油酸分子的直径d,S0.2m2解出d51010m(2)由状态A变到状态B,温度升高,故选项A对;由C得:;在pT图线中,连接OA、OB,由于OA直线的斜率大于OB直线的斜率,故VAVB,所以选项B对、C错;气体V变大,对外做功,W0,由UWQ,知Q0,所以选项D对故正确答案为A、B、D.(3)从状态(p0、V0、T0)开始,最后变为状态(p1、V1、T1)的过程,由于V10.又由于既不吸热也不放热,故Q0,结合热力学第一定律:WQU,故
16、得出U0,内能增加而一定质量的理想气体的内能只与温度有关,内能增加,则温度升高,故T0T1. 11(2009泰州模拟)(1)有以下说法:A布朗运动的实质是液体分子的无规则运动B液体的沸点随大气压的增大而增大C在温度不变的条件下,饱和汽的体积减小,其压强增大D随着高科技的不断发展,绝对零度是可以达到的E热量不能自发地从低温物体传给高温物体F将一个分子从无穷远处靠近另一个分子,则分子力先增大后减小最后再增大其中正确的有:_.(2)横截面积S3dm2的圆筒内装有质量m0.6kg的水,被太阳光垂直照射2min,水的温度升高了1.设大气顶层的太阳能只有45%到达地面,太阳与地球之间的平均距离为1.510
17、11m,试估算出太阳的全部辐射功率是多少(已知水的比热容c4200J/kg.保留1位有效数字)答案(1)B、E、F(2)41026W解析(1)布朗运动是悬浮在液体中的小颗粒运动,不是液体分子的运动,A错;液体的沸点随大气压的增大而增大,故B正确;饱和汽的压强与体积无关,C错;绝对零度是不可能达到的,D错;分子从无穷远处靠近另一个分子时,分子力应先增大(表现为引力)再减小(表现为引力)后增大(表现为斥力),F对故正确选项为B、E、F(2)由题意可知:cmt得P41026W12(2009潍坊一调)为适应太空环境,去太空旅行的航天员都要穿航天服航天服有一套生命保障系统,为航天员提供合适的温度、氧气和
18、气压,让航天员在太空中如同在地面上一样假如在地面上航天服内气压为1atm,气体体积为2L,到达太空后由于外部气压低,航天服急剧膨胀,内部气体体积变为4L,使航天服达到最大体积若航天服内气体的温度不变,将航天服视为封闭系统(1)求此时航天服内的气体压强,并从微观角度解释压强变化的原因(2)由地面到太空过程中航天服内气体吸热还是放热,为什么?(3)若开启航天服封闭系统向航天服内充气,使航天服内的气压恢复到0.9atm,则需补充1atm的等温气体多少升?答案(1)0.5atm原因见解析(2)见解析(3)1.6L解析(1)对航天服内气体,开始时压强为p11atm,体积为V12L,到达太空后压强为p2,气体体积为V24L.由理想气体方程得:p1V1p2V2解得p20.5atm航天服内,温度不变,气体分子平均动能不变,体积膨胀,单位体积内的分子数减少,单位时间撞击到单位面积上的分子数减少,故压强减小(2)航天服内气体吸热因为体积膨胀对外做功,而航天服内气体温度不变,即气体内能不变,由热力学第一定律可知气体吸热(3)设需补充1atm气体V升后达到的压强为p30.9atm,取总气体为研究对象 p1(V1V)p3V2解得V1.6L