1、1 电磁感应 楞次定律教学目标:1理解电磁感应现象产生的条件、磁通量;2能够熟练应用楞次定律或右手定则判断感应电流及感应电动势的方向教学重点:楞次定律的应用教学难点:楞次定律的应用教学方法:讲练结合 教学过程:一、电磁感应现象1产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述是充分条件,不是必要的。在导体做切
2、割磁感线运动时用它判定比较方便。2.感应电动势产生的条件。感应电动势产生的条件是:穿过电路的磁通量发生变化。这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。二、楞次定律1楞次定律感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。楞次定律解决的是感应电流的方向问题。它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。2对“阻碍”
3、意义的理解:(1)阻碍原磁场的变化。“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流(3)阻碍不是相反当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其它形式的能转化为电能因此楞次定律是能量转化和守恒定律在电磁感应中的体现3楞次定律的具体应用(1)从
4、“阻碍磁通量变化”的角度来看,由磁通量计算式=BSsin可知,磁通量变化=2-1有多种形式,主要有:S、不变,B改变,这时=BSsinB、不变,S改变,这时=SBsinB、S不变,改变,这时=BS(sin2-sin1)当B、S、中有两个或三个一起变化时,就要分别计算1、2,再求2-1了。(2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于是由相对运动引起的,所以只能是机械能减少转化为电能,表现出的现象就是“阻碍”相对运动。(3)从“阻碍自身电流变化”的角度来看,就是自感现象。在应用楞次定律时一定要注意:“阻碍”不等于“反向
5、”;“阻碍”不是“阻止”。4右手定则。对一部分导线在磁场中切割磁感线产生感应电流的情况,右手定则和楞次定律的结论是完全一致的。这时,用右手定则更方便一些。5楞次定律的应用步骤楞次定律的应用应该严格按以下四步进行:确定原磁场方向;判定原磁场如何变化(增大还是减小);确定感应电流的磁场方向(增反减同);根据安培定则判定感应电流的方向。6解法指导:(1)楞次定律中的因果关联楞次定律所揭示的电磁感应过程中有两个最基本的因果联系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系.抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键.(
6、2)运用楞次定律处理问题的思路(a)判断感应电流方向类问题的思路运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为:明确原磁场:弄清原磁场的方向及磁通量的变化情况.确定感应磁场:即根据楞次定律中的阻碍原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向.判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向.(b)判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部
7、分的导体发生了运动.(如例2)对其运动趋势的分析判断可有两种思路方法:常规法:据原磁场(B原方向及情况)确定感应磁场(B感方向)判断感应电流(I感方向)导体受力及运动趋势. 效果法由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义.据阻碍原则,可直接对运动趋势作出判断,更简捷、迅速三、典型题例【例1】 如图20-5所示,两个同心圆形线圈a、b在同一平面内,其半径大小关系为rarb,条形磁铁穿过圆心并与圆面垂直,则穿过两线圈的磁通量间的大小关系为( )A、 B、 C、 D、条件不足,无法判断图20-5 图20-6分析:常会有同学对此题作出这样的错误分析:,而
8、Sab =123。所以应选A。. 【例2】:在电磁感应现象中,下列说法中正确的是( )A、感应电流的磁场总是跟原来的磁场方向相反B、闭合线框放在变化的磁场中一定能产生感应电流C、闭合线杠放在匀强磁场中做切割磁感线运动,一定能产生感应电流D、感应电流的磁场总是阻碍原来磁场磁通量的变化分析:此例的分析必须熟悉发生电磁感应现象产生感应电流的条件,熟悉楞次定律。解答:根据楞次定律,感应电流的磁场总是阻碍引起感应电流的磙量的变化。原来的磁场若要减弱,则感应电流的磁场方向与原来磁场方向相同;若原来的磁场在增强,则两磁反向。产生感应电流的条件是闭合回路中磁通量变化,虽然磁场的强弱在变化,但闭合线框平行磁场放
9、入,磁通量不变(=0),不能产生感应电流,闭合线框在匀强磁场中平动时,线框中的磁通量不变,不能产生感应电流。此例应选D。【例3】 如图20-8所示,接有理想电压表的三角形导线框abc,在匀强磁场中向右运动,问:框中有无感应电流?a、b两点间有无电势差?电压表有无读数(示数不为零称有读数)A、无、无、无 B、无、有、有图20-8C、无、有、无 D、有、有、有【例4】(1996年全国)一平面线圈用细杆悬于P点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置和位置时,顺着磁场的方向看去,线圈中的感应电流的方向分别为 位置 位置(A)逆时
10、针方向 逆时针方向(B)逆时针方向 顺时针方向(C)顺时针方向 顺时针方向(D)顺时针方向 逆时针方向命题意图:考查对楞次定律的理解应用能力及逻辑推理能力.错解分析:由于空间想象能力所限,部分考生无法判定线圈经位置、时刻磁通量的变化趋势,从而无法依据楞次定律和右手螺旋定则推理出正确选项.解题方法与技巧:线圈第一次经过位置时,穿过线圈的磁通量增加,由楞次定律,线圈中感应电流的磁场方向向左,根据安培定则,顺着磁场看去,感应电流的方向为逆时针方向.当线圈第一次通过位置时,穿过线圈的磁通量减小,可判断出感应电流为顺时针方向,故选项B正确. 【例5】如图所示,有两个同心导体圆环。内环中通有顺时针方向的电
11、流,外环中原来无电流。当内环中电流逐渐增大时,外环中有无感应电流?方向如何?解:由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外向外的所有磁感线条数相等,所以外环所围面积内(应该包括内环内的面积,而不只是环形区域的面积)的总磁通向里、增大,所以外环中感应电流磁场的方向为向外,由安培定则,外环中感应电流方向为逆时针。【例6】如图,线圈A中接有如图所示电源,线圈B有一半面积处在线圈A中,两线圈平行但不接触,则当开关S闭和瞬间,线圈B中的感应电流的情况是:( )A无感应电流 B有沿顺时针的感应电流C有沿逆时针的感应电流 D无法确定解:当开关S闭和瞬间,线圈A相当于环形电流,其内部磁感线方向向里
12、,其外部磁感线方向向外。线圈B有一半面积处在线圈A中,则向里的磁场与向外的磁场同时增大。这时就要抓住主要部分。由于所有向里的磁感线都从A的内部穿过,所以A的内部向里的磁感线较密, A的外部向外的磁感线较稀。这样B一半的面积中磁感线是向里且较密,另一半面积中磁感线是向外且较稀。主要是以向里的磁感线为主,即当开关S闭和时,线圈B中的磁通量由零变为向里,故该瞬间磁通量增加,则产生的感应电流的磁场应向外,因此线圈B有沿逆时针的感应电流。答案为C。NSv0【例7】 如图所示,闭合导体环固定。条形磁铁S极向下以初速度v0沿过导体环圆心的竖直线下落的过程中,导体环中的感应电流方向如何?解:从“阻碍磁通量变化
13、”来看,原磁场方向向上,先增后减,感应电流磁场方向先下后上,感应电流方向先顺时针后逆时针。从“阻碍相对运动”来看,先排斥后吸引,把条形磁铁等效为螺线管,根据“同向电流互相吸引,反向电流互相排斥”,也有同样的结论。a db cO1O2【例8】 如图所示,O1O2是矩形导线框abcd的对称轴,其左方有匀强磁场。以下哪些情况下abcd中有感应电流产生?方向如何?A将abcd 向纸外平移 B将abcd向右平移 C将abcd以ab为轴转动60 D将abcd以cd为轴转动60解:A、C两种情况下穿过abcd的磁通量没有发生变化,无感应电流产生。B、D两种情况下原磁通向外,减少,感应电流磁场向外,感应电流方
14、向为abcd。c a d bL2 L1【例9】如图所示装置中,cd杆原来静止。当ab 杆做如下那些运动时,cd杆将向右移动?A向右匀速运动 B向右加速运动C向左加速运动 D向左减速运动解:.ab 匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变化,L2中无感应电流产生,cd保持静止,A不正确;ab向右加速运动时,L2中的磁通量向下,增大,通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确。选B、DO1O2【例10】 如图所示,当磁铁绕O1O2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?解:本题分析方法很多,最简单的方法是:从“阻碍相对运动”的角度
15、来看,导线框一定会跟着条形磁铁同方向转动起来。如果不计摩擦阻力,最终导线框将和磁铁转动速度相同;如果考虑摩擦阻力导线框的转速总比条形磁铁转速小些。a b【例11】 如图所示,水平面上有两根平行导轨,上面放两根金属棒a、b。当条形磁铁如图向下移动时(不到达导轨平面),a、b将如何移动?解:若按常规用“阻碍磁通量变化”判断,则要根据下端磁极的极性分别进行讨论,比较繁琐。而且在判定a、b所受磁场力时。应该以磁极对它们的磁场力为主,不能以a、b间的磁场力为主(因为它们是受合磁场的作用)。如果主注意到:磁铁向下插,通过闭合回路的磁通量增大,由=BS可知磁通量有增大的趋势,因此S的相应变化应该使磁通量有减
16、小的趋势,所以a、b将互相靠近。这样判定比较简便。a b【例12】 如图所示,绝缘水平面上有两个离得很近的导体环a、b。将条形磁铁沿它们的正中向下移动(不到达该平面),a、b将如何移动?解:根据=BS,磁铁向下移动过程中,B增大,所以穿过每个环中的磁通量都有增大的趋势,由于S不可改变,为阻碍增大,导体环应该尽量远离磁铁,所以a、b将相互远离。O1 aO2 b【例14】如图所示,在条形磁铁从图示位置绕O1O2轴转动90的过程中,放在导轨右端附近的金属棒ab将如何移动?abLR解:无论条形磁铁的哪个极为N极,也无论是顺时针转动还是逆时针转动,在转动90过程中,穿过闭合电路的磁通量总是增大的(条形磁
17、铁内、外的磁感线条数相同但方向相反,在线框所围面积内的总磁通量和磁铁内部的磁感线方向相同且增大。而该位置闭合电路所围面积越大,总磁通量越小,所以为阻碍磁通量增大金属棒ab将向右移动。【例15】如图所示,a、b灯分别标有“36V 40W”和“36V 25W”,闭合电键调节R,能使a、b都正常发光。断开电键后重做实验:电键闭合后看到的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?解:闭合瞬间,由于电感线圈对电流增大的阻碍作用,a将慢慢亮起来,b立即变亮。这时L的作用相当于一个大电阻;稳定后两灯都正常发光,a的功率大,较亮。这时L的作用相当于一只普通的电阻(就是该线圈的内阻);断开瞬间
18、,由于电感线圈对电流减小的阻碍作用,通过a的电流将逐渐减小,a渐渐变暗到熄灭,而abRL组成同一个闭合回路,所以b灯也将逐渐变暗到熄灭,而且开始还会闪亮一下(因为原来有IaIb),并且通过b的电流方向与原来的电流方向相反。这时L相当于一个电源。OB【例16】如图所示,用丝线悬挂闭合金属环,悬于O点,虚线左边有匀强磁场,右边没有磁场。金属环的摆动会很快停下来。试解释这一现象。若整个空间都有向外的匀强磁场,会有这种现象吗?解:只有左边有匀强磁场,金属环在穿越磁场边界时,由于磁通量发生变化,环内一定会有感应电流产生,根据楞次定律将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象。当然也可以用
19、能量守恒来解释:既然有电流产生,就一定有一部分机械能向电能转化,最后电流通过导体转化为内能。若空间都有匀强磁场,穿过金属环的磁通量反而不变化了,因此不产生感应电流,因此也就不会阻碍相对运动,摆动就不会很快停下来。QabP三、电磁感应在实际生活中的应用例析【例17】如图所示是生产中常用的一种延时继电器的示意图。铁芯上有两个线圈A和B。线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合电路。在拉开开关S的时候,弹簧k并不能立即将衔铁D拉起,从而使触头C(连接工作电路)立即离开,过一段时间后触头C才能离开;延时继电器就是这样得名的。试说明这种继电器的工作原理。解析:当拉开开关S时使线圈A中电流变小
20、并消失时,铁芯中的磁通量发生了变化(减小),从而在线圈B中激起感应电流,根据楞次定律,感应电流的磁场要阻碍原磁场的减小,这样,就使铁芯中磁场减弱得慢些,因此弹簧K不能立即将衔铁拉起。ABSkDC【例18】如图所示是家庭用的“漏电保护器“的关键部分的原理图,其中P是一个变压器铁芯,入户的两根电线”(火线和零线)采用双线绕法,绕在铁芯的一侧作为原线圈,然后再接入户内的用电器。Q是一个脱扣开关的控制部分(脱扣开关本身没有画出,它是串联在本图左边的火线和零线上,开关断开时,用户的供电被切断),Q接在铁芯另一侧副线圈的两端a、b之间,当a、b间没有电压时,Q使得脱扣开关闭合,当a、b间有电压时,脱扣开关
21、即断开,使用户断电。(1)用户正常用电时,a、b之间有没有电压?(2)如果某人站在地面上,手误触火线而触电,脱扣开关是否会断开?为什么?解析:(1) 用户正常用电时,a、b之间没有电压,因为双线绕成的初级线圈两根导线中的电流总是大小相等而方向相反的,穿过铁芯的磁通量总为0,副线圈中不会有感应电动势产生。(2)人站在地面上手误触火线,电流通过火线和人体而流向大地,不通过零线,这样变压器的铁芯中就会有磁通量的变化,从而次级产生感应电动势,脱扣开关就会断开四基础练习1、如图20-11所示,导线框与通电直导线在同一平面内,若导线框自通电直导线左侧运动到右侧,这过程中导线框中感应电流的方向为( )A、顺
22、时针方向 B、逆时针方向C、先顺时针方向,再变为逆时针方向D、先从顺时针方向变为逆时针方向,再由逆时针方向变为顺时针方向图20-11 图20-122、如图20-12所示,导MN和PQ都可以在平行的水平放置的光滑金属导轨上滑动,且在整个装置的区域内存在图示的匀强磁场,当导体MN向减速运动时,导体PQ所受磁场力(只考虑导体棒的电阻,其他电阻不计)( )A、向右 B、向左 C、等于零 D、其方向不能确定3、带负电的圆环绕圆心旋转,在环的圆心处的有一闭合小线圈,小线圈和圆环在同一平面,则以下说法中正确的是( )A、 只要圆环在转动,小线圈内就一定有感应电流产生B、 圆环不管怎样转动,小线圈内都没有感应
23、电流产生C、 圆环在做变速转动时,小线圈内一定有感应电流产生D 圆环做匀速转动时,小线圈内没有感应电流产生4、三个同样的磁棒穿过三个纸筒落下,第一个纸筒没有套铜环,第二、经三个纸筒套有铜环并且第三个比第二个套的环的匝数多,若磁棒通过圆筒的时间分别为T1、T2、T3,于是( )A、T1T2T3 B、T3T2T1 C、T1=T2=T3 D、T2T3T15下列图中能产生感应电流的是() v v VNSV(A) (B) (C) (D) (E) (F)6下列说法中正确的是:感应电动势的大小跟()有关:A穿过闭合电路的磁通量B穿过闭合电路的磁通量的变化大小C穿过闭合电路的磁通量的变化快慢D单位时间内穿过闭
24、合电路的磁通量的变化量 vBBvvBvB(A) (B) (C) (D)7如图所示,试根据已知条件确定导线中的感应电流方向(图中的导线是闭合电路中的一部分):8(99全国)如图所示,为地磁场磁感线的示意图, 在北半球地磁场的坚直分量向下。飞机在我国上空匀逐巡航。机翼保持水平,飞行高度不变。由于地磁场的作用,金属机翼上有电势差。设飞行员左方机翼未端处的电势为U1,右方机翼未端处的电势力U2,则( )A若飞机从西往东飞,U1比U2高B若飞机从东往西飞,U2比U1高C若飞机从南往北飞,U1比U2高D若飞机从北往南飞,U2比U1高9如图所示,两个线圈绕在同一圆筒上,A中接有电源,B中导线ab短路。当把磁
25、铁迅速插入A线圈中时,A线圈中的电流将 (填减少,增大,不变),B线圈中的感应电流的方向在外电路中是由 到 的;如线圈B能自由移动,则它将向 移动(左,右,不)。10如图所示,闭合金属铜环从高为h的曲面滚下,沿曲面的另一侧上升,设闭合环初速度为零,不计摩擦,则( )A若是匀强磁场,环上升的高度小于hB若是匀强磁场,环上升的高度大于hC若是非匀强磁场,环上升的高度等于hD若是非匀强磁场,环上升的高度小于h11一根磁化的钢棒以速度v射入水平放置的固定的铜管内,v的方向沿管中心轴,不B 计棒的重力和空气阻力,则在入射过程中( )A铜管的内能增加 B钢棒的速率减小 C钢棒的速率不变 D钢棒的速率增大1
26、2如图(a),圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q,P和Q共轴.Q中通有变化电流,电流随时间变化的规律如图(b)所示.P所受的重力为G,桌面对P的支持力为N,则( )At1时刻NG Bt2时刻NGCt3时刻NGDt4时刻N=G13如图所示,ab是一个可绕垂直于纸面的轴O转动的闭合矩形导线框,当滑动变阻器的滑片P自左向右滑动时,从纸外向纸内看,线框ab将( )A保持静止不动B逆时针转动C顺时针转动D发生转动,但电源极性不明,无法确定转动方向14. 在某星球上的宇航员,为了确定该星球是否存在磁场,他手边有一根表面绝缘的长导线和一个灵敏电流计,现请你指导他如何操作参 考 答 案1D 2. A 3 CD 4 B 5 BCF 6 CD 7 略 8 AC 9 减小 b a左 10D 解析 若是匀强磁场,闭合环的磁通量不发生变化,无感应电流产生,环也就受不到磁场力,所以环仍保持机械能守恒,上升的高度等于h。若是非匀强磁场,闭合环的磁通量发生变化,有感应电流产生,环受到磁场力作用去阻碍环与磁场间的相对运动,使环损失一部分机械能向电能转化,所以环上升的高度小于h。因此答案D正确。11AB 当磁化的钢棒射入铜管时,铜管中因磁通量增加而产生感应电流,铜管与钢棒间的磁场力会阻碍其相对运动,使钢棒的机械能向电能转化,进而使铜管的内能增加。所以答案AB正确。12AD 13C14略