1、2023届高三四校联考数 学本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名姓名考号座位号等相关信息填写在答题卡指定区域内,并用2B铅笔填涂相关信息.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.一选择
2、题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D.2.已知为虚数单位,则复数( )A. B.C. D.3.已知在等腰中,点在线段上,且,则的值为( )A. B. C. D.4.古希腊亚历山大时期的数学家帕普斯在数学汇编第3卷中记载着一个确定重心的定理:“如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以该闭合图形的重心旋转所得周长的积”,即(表示平面图形绕旋转轴旋转的体积,表示平面图形的面积,表示重心绕旋转轴旋转一周的周长).如图直角
3、梯形,已知,则重心到的距离为( )A. B. C.3 D.25.已知双曲线的焦点关于渐近线的对称点在双曲线上,则双曲线的离心率为( )A.2 B. C. D.6.已知数列满足,则的前项积的最大值为( )A. B. C.1 D.47.若函数在其定义域内存在实数满足,则称函数为“局部奇函数”.知函数是定义在上的“局部奇函数”,则实数的取值范围是( )A. B. C. D.8.如图,在三棱锥中,平面,段和线段上任意一点,则的最小值为( )A. B. C. D.2二多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
4、9.已知,则下列说法正确的是( )A. B.C. D.10.已知函数满足,其图象向右平移个单位后得到函数的图象,且在上单调递减,则( )A.B.函数的图象关于对称C.可以等于5D.的最小值为211.已知为坐标原点,点为抛物线的焦点,点,直线交抛物线于两点(不与点重合),则以下说法正确的是( )A.B.存在实数,使得C.若,则D.若直线与的倾斜角互补,则12.已知定义在上的函数的图象连续不间断,当时,且当时,则下列说法正确的是( )A.B.在上单调递增C.若,则D.若是在区间内的两个零点,且,则三填空题:本题共4小题,每小题5分,共20分.13.已知圆,若过定点有且仅有一条直线被圆截得弦长为2,
5、则可以是_.(只需要写出其中一个值,若写出多个答案,则按第一个答案计分.)14.已知在四面体中,则该四面体外接球的表面积为_.15.已知函数,若函数的图象经过四个象限,则实数的取值范围是_.16.已知数列满足,记,(其中表示不大于的最大整数,比如),则_.(参考数据:)四,解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知正项数列的前项和为.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.18.(12分)在中,内角所对的边分别为,且.(1)求的大小;(2)在边上,且,求的最大值.19.(12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比
6、赛,若赛完5局仍末出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求乙只赢1局且甲赢得比赛的概率;(2)记为比赛决出胜负时的总局数,求的分布列和期望.20.(12分)如图,四棱锥中,已知,且与平面所成的角为.(1)证明:;(2)若点为的中点,求平面与平面夹角的余弦值.21.(12分)已知椭圆,斜率为的直线与椭圆只有一个公共点(1)求椭圆的标准方程;(2)过椭圆右焦点的直线与椭圆相交于两点,点在直线上,且轴,求直线在轴上的截距.22.(12分)已知函数(其中是自然对数底数).(1)求的最小值;(2)若过点可作曲线的两条切线,求证:.(参考
7、数据:)数学参考答案及评分标准题号123456789101112答案BCBACCDCBDBCDACDABD1.【答案】B【解析】,则,故选:.2.【答案】C【解析】.故选:C.3.【答案】B【解析】由图,因为,故,可得,则,故选:.4.【答案】A【解析】直角梯形绕旋转一周所得的圆台的体积为;,故记重心到的距离为,则,则,故选:.5.【答案】C【解析】如图所示,关于渐近线的对称点在双曲线上,则.所以是的中位线,进而.所以离心率,故选:.6.【答案】C【解析】由得:,两式相除得:,即,所以数列是以3为周期的周期数列,由得:;记数列的前项积为,则,所以.故选:C.7.【答案】D【解析】根据“局部奇函
8、数”定义知:有解,即方程有解,则即有解;设,则(当且仅当时取等号),方程等价于在时有解,在时有解;在上单调递增,即实数的取值范围为.故选:.8.【答案】C【解析】依题意得平面,则在中,故又所以即,当时取等号当时,为的中点,此时当时,为的中点综上所述的最小值是.故选:.9.【答案】BD【解析】对于,因为,故错误;对于,因为,所以,所以,故B正确;对于,因为,所以,所以,故错误;对于,因为,所以,故正确.故选:BD.10.【答案】BCD【解析】,因为,所以,故是的一个周期,故,即,又,故错误;因为,当时,由于是的一个对称中心,B正确;由题有在上单调递减,故有,化简得,当时,因为,故可以取正确;因为
9、,故,当时,可知正确;故选:BCD.11.【答案】ACD【解析】不妨把两点设为,焦点为,对于选项,显然成立,选项正确;对于选项,联立直线与抛物线,得,所以,进而,得,所以.所以,选项错误;对于选项,依题意,结合,得或,进而,选项正确;对于选项,依题意,整理得,代入解得或(舍去).选项正确.故选:ACD.12.【答案】ABD【解析】对于,在中令,则,所以,故正确;对于,当时,对两边求导,则所以时,所以,令,所以在上单调递增,所以对;对于,由知,在上单调递增,上单调递减,由知不可能均大于等于1,否则,则,这与条件矛盾,舍去.若,则,满足条件,此时,;,若,则,而,则所以,而,所以错;对于,由在上单
10、调递增,上单调递减,知,注意到,所以若,则,则,所以,这与矛盾,舍去.所以,在时,中,令,而由,所以,所以,故正确.故选:.13.【答案】1或(写出一个即可)【解析】依题意,该直线过圆心或垂直于,圆心到直线距离为或,所以或.14.【答案】【解析】在平面的射影为三角形的外心.又,所以三角形的外接圆的半径;设四面体外接球的半径为.解得.所以外接球的表面积为.故答案为:.15.【答案】【解析】直线过定点过四个象限等价于与在轴的左右两边有异号交点,过作的切线,设切点为,切线方程为,切线过,解得或(舍去),此时,当时,线段所在直线斜率为1;当时,射线所在直线斜率为,与轴交于,由图象知满足题意的的范围是:
11、.故答案为:.16.【答案】6064【解析】设,则,所以在单调递增,在单调递减,又,所以存在使得,即,且当时,所以当时,又,所以,综上,所以.17.【解析】(1)因为所以-得,所以,因为数列各项均为正数,所以,.又,所以,所以数列是以2为首项,2为公差的等差数列,所以的通项公式为;(2).所以,因为,所以,所以.18.【解析】(1)因为,根据正弦定理可得:,可化为:,因为,所以,.所以原式可化为:,因为,所以,所以原式可化为,即.因为,所以.(2)因为,故,则.又则设,当且仅当,即时等号成立.所以,的最大值为.方法二:设,则,在中,由余弦定理有:,即在和中,由及余弦定理有:整理得代入,得:由得
12、:,下同方法一.19.【解析】(1)用表示“乙只赢1局且甲赢得比赛”,表示“第局甲获胜”,表示“第局乙获胜”,则.则,事件与事件互斥,各局比赛结果相互独立.由概率加法公式和乘法公式,有.(2)的可能取值为2,3,4,5,.(或.).故的分布列为2345所以.20.【解析】证明:(1)如图所示,过点作面交面于点,连,延长交于点.因为与底面所成的角为;所以,所以.因为,则;因为,所以,且;又,所以平面,所以.又是等边三角形,则;则,且,所以四边形为平行四边形,故;所以.(2)因为两两垂直,则以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系.则设平面的一个法向量为,则即,设平面的一个法
13、向量设,则,即,所以平面与平面夹角的余弦值为.21.【解析】(1)依题意,直线的方程为,即由,消去得.由于直线与椭圆只有一个公共点,故,即,因为在椭圆上,所以解得故椭圆的标准方程:.(2)方法一:依题意直线斜率不为0,可设直线为,则联立椭圆方程,可得由韦达定理得,进而,有由直线的方程为,得直线AC在轴上的截距为故直线在轴的上截距为.方法二:设,则,则直线的方程为,则直线在轴的截距为若垂直于轴,则,所以直线与轴交点为,截距为.若不垂直于轴,设直线的方程为.与椭圆方程联立,得,由韦达定理有.直线在轴的截距为又因为所以所以,所以所以故直线在轴上的截距为.方法三:右焦点为,直线与轴相交于点为的中点为若
14、垂直于轴,则,所以直线与轴交点为,截距为.若不垂直于轴,设直线的方程为与椭圆方程联立,得,由韦达定理有又,得,故直线的斜率分别为所以.因为所以,即,故三点共线.因为对于任意直线点都是唯一确定的,所以,直线与轴交点为,即直线在轴上的截距为.22.【解析】(1)函数定义域为,所以在上单调递增,且,所以当时,单调递减;当时,单调递增,.所以.(2)设切点为,则,在处的切线为,由于切线过点,所以,而由(1),在上单调递增,不同的值对应的切线斜率不同设,所以过点可作曲线的两条切线当且仅当关于的方程有两个实根.,当时,在上单调递减,至多有一个实根,不合题意;当时,当时,单调递增;当时,单调递减.而时,时,所以当且仅当时,有两个实根,即当且仅当时,过点可作曲线的两条切线.只需证时,.证法一:设,则,当时,单调递增;当时,单调递减,所以,即.所以.设,只需证.,当时,单调递减;当时,单调递增,而所以存在,当时,;当时,;当时,所以在单调递增,在单调递减,在单调递增.而.由得,所以,所以.综上得:原不等式成立.证法二:设,则,当时,单调递减;当时,单调递增,所以,即.(*)设,只需证.1)当时,由,.设,则,当时,单调递减;当时,单调递增;当时,单调递减.而,所以,则.2)当时,设,则,所以在上单调递增,所以在上单调递增,即,所以在上单调递增,.综上得:原不等式成立.