1、阶段回扣练6数 列(建议用时:90分钟)一、选择题1(2015合肥一模)以Sn表示等差数列an的前n项和,若a2a7a56,则S7()A42 B28 C21 D14解析依题意得a2a7a5(a5a4)a5a46,S77a442,故选A.答案A2若数列an的通项公式是an(1)n(3n2),则a1a2a10等于 ()A15 B12 C12 D15解析由题意知,a1a2a1014710(1)10(3102)(14)(710)(1)9(392)(1)10(3102)3515.答案A3(2015合肥质量检测)已知数列an的前n项和为Sn,并满足:an22an1an,a54a3,则S7()A7 B12
2、C14 D21解析依题意,数列an是等差数列,且a3a54,S714,故选C.答案C4(2014海口调研)已知等差数列an,前n项和用Sn表示,若2a53a72a914,则S13等于()A26 B28 C52 D13解析依题意得7a714,a72,S1313a726,故选A.答案A5设an是等比数列,函数yx2x2 013的两个零点是a2,a3,则a1a4()A2 013 B1 C1 D2 013解析由题意可知,a2,a3是x2x2 0130的两根,由根与系数的关系可得,a2a32 013,根据等比数列的性质可知a1a4a2a32 013.答案D6(2014荆州质检)公差不为零的等差数列an的
3、前n项和为Sn,若a4是a3与a7的等比中项,且S1060,则S20()A80 B160 C320 D640解析由题意可知,aa3a7,由于an是等差数列,所以(a13d)2(a12d)(a16d),解得a1d(d0舍去),又S1010a1d60,所以a1d6,从而d2,a13.所以S2020a1d602019320.答案C7(2015银川质量检测)已知数列an为等差数列,若a3a170,且a10a110,则使an的前n项和Sn有最大值的n为()A9 B10 C11 D12解析依题意得2a100,即a100,a11a100,因此在等差数列an中,前10项均为正,从第11 项起以后各项均为负,使
4、数列an的前n项和Sn有最大值的n为10,故选B.答案B8(2014晋中名校联考)已知正项等差数列an满足:an1an1a(n2),等比数列bn满足:bn1bn12bn(n2),则log2(a2b2)()A1或2 B0或2 C2 D1解析由题意可知an1an12ana,解得an2(n2)(由于数列an每项都是正数,故an0舍去),又bn1bn1b2bn(n2),所以bn2(n2),故log2(a2b2)log242.答案C9已知an是等差数列,Sn为其前n项和,若S21S4 000,O为坐标原点,点P(1,an),点Q(2 011,a2 011),则等于()A2 011 B2 011 C0 D
5、1解析由S21S4 000,得a22a23a4 0000,由于a22a4 000a23a3 9992a2 011,所以a22a23a4 0003 979a2 0110,从而a2 0110,而2 011a2 011an2 011.答案A10数列an满足a11,且对任意的m,nN*都有amnamanmn,则等于()A. B. C. D.解析令m1得an1ann1,即an1ann1,于是a2a12,a3a23,anan1n,上述n1个式子相加得ana123n,所以an123n,因此2,所以22.答案A二、填空题11(2015惠州调研)在等比数列an中,a11,公比q2,若an的前n项和Sn127,则
6、n的值为_解析由题意知Sn2n1127,解得n7.答案712已知等比数列an中,各项都是正数,且a1,a3,2a2成等差数列,则的值为_解析设等比数列an的公比为q,a1,a3,2a2成等差数列,a3a12a2,a1q2a12a1q.q22q10.q1.各项都是正数,q0.q1.q2(1)232.答案3213等差数列an的前n项和为Sn,已知S100,S1525,则nSn的最小值为_解析由题意知a1a100,a1a15.两式相减得a15a105d,d,a13.nSnn,令f(x),则f(x)x2x,f(x)在x处取得极小值,因而检验n6时,6S648,而n7时,7S749.答案4914(201
7、4安徽卷)如图,在等腰直角三角形ABC中,斜边BC2.过点A作BC的垂线,垂足为A1;过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;,依此类推设BAa1,AA1a2,A1A2a3,A5A6a7,则a7_解析由BC2得ABa12AA1a2A1A2a31,由此可归纳出an是以a12为首项,为公比的等比数列,因此a7a1q62.答案15(2015南通模拟)在数列an中,若aap(n1,nN*,p为常数),则称an为“等方差数列”,下列是对“等方差数列”的判断:若an是等方差数列,则a是等差数列;(1)n是等方差数列;若an是等方差数列,则akn(kN*,k为常数)也是等方差数
8、列其中真命题的序号为_解析正确,因为aap,所以aap,于是数列a为等差数列正确,因为(1)2n(1)2(n1)0为常数,于是数列(1)n为等方差数列正确,因为aa(aa)(aa)(aa)(aa)kp,则akn(kN*,k为常数)也是等方差数列答案三、解答题16(2014重庆卷)已知an是首项为1,公差为2的等差数列,Sn表示an的前n项和(1)求an及Sn;(2)设bn是首项为2的等比数列,公比q满足q2(a41)qS40.求bn的通项公式及其前n项和Tn.解(1)因为an是首项a11,公差d2的等差数列,所以ana1(n1)d2n1.故Sn13(2n1)n2.(2)由(1)得a47,S41
9、6.因为q2(a41)qS40,即q28q160,所以(q4)20,从而q4.又因为b12,bn是公比q4的等比数列,所以bnb1qn124n122n1.从而bn的前n项和Tn(4n1)17(2014广州综测)已知等差数列an的前n项和为Snn2pnq(p,qR),且a2,a3,a5成等比数列(1)求p,q的值;(2)若数列bn满足anlog2nlog2bn,求数列bn的前n项和Tn.解(1)当n1时,a1S11pq,当n2时,anSnSn1n2pnq(n1)2p(n1)q2n1p.an是等差数列,1pq211p,得q0.又a23p,a35p,a59p,a2,a3,a5成等比数列,aa2a5,
10、即(5p)2(3p)(9p),解得p1.(2)由(1)得an2n2.anlog2nlog2bn,bnn2ann22n2n4n1.Tnb1b2b3bn1bn40241342(n1)4n2n4n1,4Tn41242343(n1)4n1n4n,得3Tn4041424n1n4nn4n.Tn(3n1)4n118(2014重庆模拟)设Sn为等差数列an的前n项和,已知S3a7,a82a33.(1)求an;(2)设bn,数列bn的前n项和为Tn,求证:Tn(nN*)(1)解设数列an的公差为d,由题意得解得a13,d2,ana1(n1)d2n1.(2)证明由(1)得Snna1dn(n2),bn.Tnb1b2
11、bn1bn,Tn.故Tn.19已知数列an的前n项和为Sn,且Snn2n(nN*)(1)求数列an的通项公式;(2)设cn,数列cn的前n项和为Tn,求使不等式Tn对一切nN*都成立的最大正整数k的值;(3)设f(n)是否存在mN*,使得f(m15)5f(m)成立?若存在,求出m的值;若不存在,请说明理由解(1)当n1时,a1S16,当n2时,anSnSn1n5.而当n1时,n56.ann5(nN*)(2)cn,Tnc1c2cn.Tn1Tn0.Tn单调递增,故(Tn)minT1.令,得k671,所以kmax671.(3)f(n)当m为奇数时,m15为偶数,3m475m25,m11.当m为偶数时,m15为奇数,m2015m10,mN*(舍去)综上,存在唯一正整数m11,使得f(m15)5f(m)成立