1、题型五立体几何中的空间角问题(推荐时间:30分钟)1.如图所示,已知AB平面ACD,DE平面ACD,ACD为等边三角形,ADDE2AB,F为CD的中点(1)求证:AF平面BCE;(2)求证:平面BCE平面CDE;(3)求直线BF和平面BCE所成角的正弦值2(2011湖南)如图,在圆锥PO中,已知PO,O的直径AB2,C是的中点,D为AC的中点(1)证明:平面POD平面PAC;(2)求二面角BPAC的余弦值答 案1(1)证明设ADDE2AB2a,以A为原点,AC为x轴,AB为z轴,建立如图所示的直角坐标系Axyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a
2、,a,2a)因为F为CD的中点,所以F.,(a,a,a),(2a,0,a)因为(),AF平面BCE,所以AF平面BCE.(2)证明因为,(a,a,0),(0,0,2a),故0,0,所以,.所以平面CDE.又AF平面BCE,所以平面BCE平面CDE.(3)解设平面BCE的法向量为n(x,y,z)由n0,n0,可得xyz0,2xz0,取n(1,2)又,设BF和平面BCE所成的角为,则sin .所以直线BF和平面BCE所成角的正弦值为.2.方法一(1)证明如图,连结OC,因为OAOC,D是AC的中点,所以ACOD.又PO底面O,AC底面O,所以ACPO.因为OD,PO是平面POD内的两条相交直线,所
3、以AC平面POD,而AC平面PAC,所以平面POD平面PAC.(2)解在平面POD中,过O作OHPD于H,由(1)知,平面POD平面PAC,所以OH平面PAC.又PA平面PAC,所以PAOH.在平面PAO中,过O作OGPA于G,连结HG,则有PA平面OGH,从而PAHG,故OGH为二面角BPAC的平面角在RtODA中,ODOAsin 45.在RtPOD中,OH.在RtPOA中,OG.在RtOHG中,sinOGH.所以cosOGH.故二面角BPAC的余弦值为.方法二(1)证明如图,以O为坐标原点,OB,OC,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0),A(1,0,0
4、),B(1,0,0),C(0,1,0),P(0,0,),D.设n1(x1,y1,z1)是平面POD的一个法向量,则由n10,n0,得所以z10,x1y1.取y11,得n1(1,1,0)设n2(x2,y2,z2)是平面PAC的一个法向量,则由n20,n20,得所以x2z2,y2z2.取z21,得n2(,1)因为n1n2(1,1,0)(,1)0,所以n1n2.从而平面POD平面PAC.(2)解因为y轴平面PAB,所以平面PAB的一个法向量为n3(0,1,0)由(1)知,平面PAC的一个法向量为n2(,1)设向量n2和n3的夹角为,则cos .由图可知,二面角BPAC的平面角与相等,所以二面角BPAC的余弦值为.高考资源网w w 高 考 资源 网