1、第一部分高考层级专题突破层级三2个压轴大题巧取高分专题二函数、导数与不等式第二讲导数与不等式课时跟踪检测(二十四)导数与不等式A卷1(2019浙江模拟)已知f(x)exexaln x(aN,且a2)的极值点x0.(1)求a的值;(2)若不等式f(x)b(bZ)恒成立,求b的最大值解:(1)函数f(x)的定义域为(0,),f(x)exex,f(x)exex,在(0,)上,f(x)0恒成立,f(x)在(0,)上单调递增f(x)exexaln x(aN,且a2)的极值点x0.f2a0,又aN,且a2.可得a2.(2)首先当x1时,f(1)ee1(3,4),又bZ,b3.其次,我们可以证明不等式:ex
2、exx22(x0)设g(x)exexx22(x0),g(x)exex2x,g(x)exex20恒成立g(x)exex2xg(0)0恒成立g(x)g(0)0恒成立exexx22(x0)exex2ln xx222ln x(x0)设h(x)x222ln x(x0),h(x)2x.可得当x1时,函数h(x)取得极小值即最小值,h(x)h(1)3,exex2ln x3恒成立,b的最大值是3.2(2019深圳二模)已知函数f(x)aex2x1.(其中常数e2.718 28,是自然对数的底数)(1)讨论函数f(x)的单调性;(2)证明:对任意的a1,当x0时,f(x)(xae)x.解:(1)由f(x)aex
3、2x1,得f(x)aex2.当a0时,f(x)0,函数f(x)在R上单调递增;当a0,解得xln,由f(x)ln,故f(x)在上单调递增,在上单调递减综上所述,当a0时,函数f(x)在R上单调递增;当a0时,h(x)ex10,当x0时,h(x)单调递增,h(x)h(0)0.当0x1时,g(x)1时,g(x)0,g(x)单调递增g(x)g(1)0.即e0,故f(x)(xae)x.B卷1(2019桃城区校级模拟)已知函数f(x)xln x.(1)求曲线yf(x)在点P(1,f(1)处的切线方程;(2)当a1时,求证:存在c,使得对任意的x(c,1),恒有f(x)ax(x1)解:(1)函数的定义域为
4、(0,),由f(x)xln x,得f(x)ln x1,f(1)0,kf(1)1,故所求切线方程为y01(x1),即xy10.(2)证明:由f(x)ax(x1),得xln xax(x1),由x0,可得ln xa(x1),设g(x)ln xa(x1),则g(x)a,当x时,g(x)0,当x时,g(x)0,又g(ea)ln eaa(ea1)aea0.由可知,存在c,使g(x)0恒成立,即存在c,使得对任意的x(c,1),恒有f(x)ax(x1)2(2019凯里市校级模拟)已知函数f(x)2xaln x(aR)(1)当a3时,求函数f(x)的极值;(2)设g(x)f(x)x2aln x,且g(x)有两个极值点x1,x2,其中x1(0,1,证明:g(x1)g(x2)解:(1)易求f(x)的定义域为(0,),当a3时,f(x)2x3ln x,f(x)2,令f(x)0得0x1;令f(x)0得x0,g(x)1,令g(x)0,得x2ax10,g(x)有两个极值点x1,x2,g(x1)g(x2)g(x1)gx1aln x122aln x122ln x1,设h(x)22ln x,x(0,1,h(x)22,当x(0,1时,恒有h(x)0,h(x)在x(0,1上单调递减,h(x)h(1)0,故g(x1)g(x2)0,即g(x1)g(x2)成立