收藏 分享(赏)

广东省化州市实验中学高中数学导学案必修五:1.doc

上传人:高**** 文档编号:335307 上传时间:2024-05-27 格式:DOC 页数:4 大小:169KB
下载 相关 举报
广东省化州市实验中学高中数学导学案必修五:1.doc_第1页
第1页 / 共4页
广东省化州市实验中学高中数学导学案必修五:1.doc_第2页
第2页 / 共4页
广东省化州市实验中学高中数学导学案必修五:1.doc_第3页
第3页 / 共4页
广东省化州市实验中学高中数学导学案必修五:1.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、(高一文科数学) 学习目标 1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形 学习过程 一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理;已知两角和一边,用 定理复习2:在ABC中,已知 A,a25,b50,解此三角形二、新课导学 学习探究探究:在ABC中,已知下列条件,解三角形. A,a25,b50; A, a,b50; A,a50,b50.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时)试试:1. 用图示分析(A为直角时)解的情况?2用图示分析(A为钝角时

2、)解的情况? 典型例题例1. 在ABC中,已知,试判断此三角形的解的情况变式:在ABC中,若,则符合题意的b的值有_个例2. 在ABC中,求的值变式:在ABC中,若,且,求角C三、总结提升 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况) 知识拓展在ABC中,已知,讨论三角形解的情况 :当A为钝角或直角时,必须才能有且只有一解;否则无解;当A为锐角时,如果,那么只有一解;如果,那么可以分下

3、面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解 学习评价 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a、b为ABC的边,A、B分别是a、b的对角,且,则的值=( ).A. B. C. D. 2. 已知在ABC中,sinAsinBsinC357,那么这个三角形的最大角是( ).A135 B90 C120 D1503. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A锐角三角形 B直角三角形C钝角三角形 D由增加长度决定4. 在ABC中,sinA:sinB:sinC4:5:6,则cosB 5. 已知ABC中,试判断ABC的形状 课后作业 1. 在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围2. 在ABC中,其三边分别为a、b、c,且满足,求角C

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3