星期四(数列问题)2016年_月_日已知数列an的前n项和Snann21,数列bn满足3nbn1(n1)an1nan,且b13.(1)求an,bn;(2)设Tn为数列bn的前n项和,求Tn,并求满足Tn7时n的最大值解(1)n2时,Snann21,Sn1an1(n1)21,两式相减,得ananan12n1,an12n1.an2n1,3nbn1(n1)(2n3)n(2n1)4n3,bn1,当n2时,bn,又b13适合上式,bn.(2)由(1)知,bn,Tn,Tn,得Tn3345.Tn.TnTn10.TnTn1,即Tn为递增数列又T37,T47,Tn7时,n的最大值为3.