收藏 分享(赏)

2020-2021学年数学北师大版(2019)必修第一册 2-3函数的单调性和最值 2-4函数的奇偶性与简单的幂函数 作业 WORD版含解析.doc

上传人:高**** 文档编号:325284 上传时间:2024-05-27 格式:DOC 页数:6 大小:518.50KB
下载 相关 举报
2020-2021学年数学北师大版(2019)必修第一册 2-3函数的单调性和最值 2-4函数的奇偶性与简单的幂函数 作业 WORD版含解析.doc_第1页
第1页 / 共6页
2020-2021学年数学北师大版(2019)必修第一册 2-3函数的单调性和最值 2-4函数的奇偶性与简单的幂函数 作业 WORD版含解析.doc_第2页
第2页 / 共6页
2020-2021学年数学北师大版(2019)必修第一册 2-3函数的单调性和最值 2-4函数的奇偶性与简单的幂函数 作业 WORD版含解析.doc_第3页
第3页 / 共6页
2020-2021学年数学北师大版(2019)必修第一册 2-3函数的单调性和最值 2-4函数的奇偶性与简单的幂函数 作业 WORD版含解析.doc_第4页
第4页 / 共6页
2020-2021学年数学北师大版(2019)必修第一册 2-3函数的单调性和最值 2-4函数的奇偶性与简单的幂函数 作业 WORD版含解析.doc_第5页
第5页 / 共6页
2020-2021学年数学北师大版(2019)必修第一册 2-3函数的单调性和最值 2-4函数的奇偶性与简单的幂函数 作业 WORD版含解析.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2020-2021学年高一数学北师大版(2019)必修一同步课时作业 2.3函数的单调性和最值 2.4函数的奇偶性与简单的幂函数1.若函数,则下列结论正确的是( )A.在上是增函数B. 在上是减函数C.是偶函数D.是奇函数2.下列函数在上为减函数的是( )A B C D 3.函数在单调递减,且为奇函数,若,则满足的x的取值范围是( )ABC D4.设函数,则( )A.是奇函数,且在单调递增B.是奇函数,且在单调递减C.是偶函数,且在单调递增D.是偶函数,且在单调递减5.设偶函数在上为增函数,且,则不等式的解集为( )A BC D6.函数在上单调递增,则实数的取值范围是( )A. B. C. D

2、.7.已知函数是奇函数,且当时,则( )A.B.C.3D.98.幂函数的图象经过点,则( )A是偶函数,且在上单调递增 B是偶函数,且在上单调递减C是奇函数,且在上单调递减 D既不是奇函数,也不是偶函数,在上单调递减9.已知函数,则下列结论正确的是( )A.是偶函数,递增区间是B.是偶函数,递减区间是C.是奇函数,递减区间是D.是奇函数,递增区间是10.幂函数的图像经过点,则( )A.B.C.D.211.设幂函数的图象经过点,则_.12.已知是奇函数,当时,则的值是_.13.已知函数为奇函数,若,则_.14.定义在R上的奇函数在上单调递增,且,则不等式的解集是_.15.已知函数(1)判断函数的

3、奇偶性(2)求证:函数在上为单调增函数(3)求满足的的取值范围答案以及解析1.答案:C解析:对于,当时,是偶函数,故选C2.答案:A解析:对于A,对称轴是,在上为减函数,对于B,在上为减函数,不合题意,对于C, 上为增函数,不合题意,对于D,是常函数,不合题意,故选:A.3.答案:D解析:根据题意,为奇函数,若,则,在单调递减,且,即,则有,解可得,即x的取值范围是;故答案为:D.4.答案:A解析:解法一 函数的定义域为,因为,所以函数为奇函数,排除C,D.因为函数,在上为增函数,所以在上为增函数,排除B,故选A.解法二 函数的定义域为,因为,所以函数为奇函数,排除C,D.当时,由,得,所以在

4、上为增函数,排除B,故选A.5.答案:A解析:由题意可得,且函数在上是减函数,画出函数的单调性示意图,如图所示:由不等式可得x和异号.结合函数的图象可得不等式的解集为,故选:A.6.答案:B解析:当时,函数在上单调递减所以的递增区间是所以,即.7.答案:A解析:由题意知,因为是奇函数,所以.8.答案:D解析:设幂函数的解析式为:,将代入解析式得:,解得,.故选:D.9.答案:C解析:10.答案:B解析:幂函数的图像经过点,则,解得,.故选B.11.答案:解析:根据幂函数的定义,可得,图象经过点,可得:解得:那么:12.答案:解析:由题意可得.13.答案:1解析:,.14.答案:解析:根据题意,函数是定义在R上的奇函数,则,又由在区间上单调递增,且,则在上,在上,,又由函数为奇函数,则在上, ,在上,,若,则有或,则不等式的解集是;故答案为:.15.答案:(1)解:函数所以f(x)为奇函数(2)证明:任取所以在上为单调增函数(3)解:,解得所以零点为当时,由(2)可得的的取值范围为的的取值范围为又该函数为奇函数,所以当时,由(2)可得的的取值范围为综上可知,解集为解析:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3