收藏 分享(赏)

2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc

上传人:高**** 文档编号:325010 上传时间:2024-05-27 格式:DOC 页数:11 大小:256.50KB
下载 相关 举报
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第1页
第1页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第2页
第2页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第3页
第3页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第4页
第4页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第5页
第5页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第6页
第6页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第7页
第7页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第8页
第8页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第9页
第9页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第10页
第10页 / 共11页
2018高考一轮通用人教A版数学(文)(练习)选修4-4 第2节 参数方程 WORD版含答案.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二节参数方程考纲传真1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程1曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数并且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数2参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x,y中的一个与参数t的关系,例如xf(t),把它代入普通方程,求出另一个变数与参数的关系yg(t),那么就是曲线的参数方程在参数方程与普通方程的互化中,必须使x,y

2、的取值范围保持一致3常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线yy0tan (xx0)(t为参数)圆x2y2r2(为参数)椭圆1(ab0)(为参数)温馨提示:在直线的参数方程中,参数t的系数的平方和为1时,t才有几何意义且几何意义为:|t|是直线上任一点M(x,y)到M0(x0,y0)的距离1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)参数方程中的x,y都是参数t的函数()(2)过M0(x0,y0),倾斜角为的直线l的参数方程为(t为参数)参数t的几何意义表示:直线l上以定点M0为起点,任一点M(x,y)为终点的有向线段的数量()(3)方程表示以点(0,1)

3、为圆心,以2为半径的圆()(4)已知椭圆的参数方程(t为参数),点M在椭圆上,对应参数t,点O为原点,则直线OM的斜率为.()答案(1)(2)(3)(4)2(教材改编)曲线(为参数)的对称中心()A在直线y2x上B在直线y2x上C在直线yx1上D在直线yx1上B由得所以(x1)2(y2)21.曲线是以(1,2)为圆心,1为半径的圆,所以对称中心为(1,2),在直线y2x上3(教材改编)在平面直角坐标系中,曲线C:(t为参数)的普通方程为_xy10由x2t,且y1t,消去t,得xy1,即xy10.4在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系曲线C1的极坐标方程为(c

4、os sin )2,曲线C2的参数方程为(t为参数),则C1与C2交点的直角坐标为_(2,4)由(cos sin )2,得xy2.由消去t得y28x.联立得即交点坐标为(2,4)5(2016江苏高考)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(为参数)设直线l与椭圆C相交于A,B两点,求线段AB的长解椭圆C的普通方程为x21.2分将直线l的参数方程代入x21,得21,即7t216t0,8分解得t10,t2,所以AB|t1t2|.10分参数方程与普通方程的互化已知直线l的参数方程为(t为参数),圆C的参数方程为(为参数)(1)求直线l和圆C的普通方程;(2)

5、若直线l与圆C有公共点,求实数a的取值范围解(1)直线l的普通方程为2xy2a0,2分圆C的普通方程为x2y216.4分(2)因为直线l与圆C有公共点,故圆C的圆心到直线l的距离d4,8分解得2a2.10分规律方法1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数2把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x及y的取值范围的影响,要保持同解变形变式训练1在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(为参数)的右顶点,求常数a的值. 【导学号:31222440】解直线l的普通方程为xya0,椭圆C的普通方程为1,4分

6、所以椭圆C的右顶点坐标为(3,0),若直线l过椭圆的右顶点(3,0),则30a0,所以a3.10分参数方程的应用已知曲线C:1,直线l:(t为参数). 【导学号:31222441】(1)写出曲线C的参数方程,直线l的普通方程;(2)过曲线C上任意一点P作与l夹角为30的直线,交l于点A,求|PA|的最大值与最小值解(1)曲线C的参数方程为(为参数)直线l的普通方程为2xy60.4分(2)曲线C上任意一点P(2cos ,3sin )到l的距离为d|4cos 3sin 6|,则|PA|5sin()6|,其中为锐角,且tan .8分当sin()1时,|PA|取得最大值,最大值为.当sin()1时,|

7、PA|取得最小值,最小值为.10分规律方法1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题2对于形如(t为参数),当a2b21时,应先化为标准形式后才能利用t的几何意义解题变式训练2(2017石家庄质检)在平面直角坐标系xOy中,圆C的参数方程为(为参数),直线l经过点P(1,2),倾斜角.(1)写出圆C的普通方程和直线l的参数方程;(2)设直线l与圆C相交于A,B两点,求|PA|PB|的值解(1)由消去,得圆C的普通方程为x2y216.2分又直线l过点P(1,2)且倾斜角,所以l的参数方程为即(t为参数).4分(2)把直线l的参数方程代入x2y

8、216,得2216,t2(2)t110,所以t1t211,8分由参数方程的几何意义,|PA|PB|t1t2|11.10分参数方程与极坐标方程的综合应用(2016全国卷)在直角坐标系xOy中,曲线C1的参数方程为(为参数)以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标解(1)C1的普通方程为y21,2分由于曲线C2的方程为sin2,所以sin cos 4,因此曲线C2的直角坐标方程为xy40.4分(2)由题意,可设点P的直角坐标为(cos

9、,sin )因为C2是直线,所以|PQ|的最小值即为P到C2的距离d()的最小值,8分又d(),当且仅当2k(kZ)时,d()取得最小值,最小值为,此时P的直角坐标为.10分规律方法1.参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解当然,还要结合题目本身特点,确定选择何种方程2数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用和的几何意义,直接求解,可化繁为简变式训练3(2017石家庄市质检)在直角坐标系xOy中,直线l的参数方程为(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为4sin 2cos .(1)求直线l的普

10、通方程与曲线C的直角坐标方程;(2)若直线l与y轴的交点为P,直线l与曲线C的交点为A,B,求|PA|PB|的值解(1)直线l的普通方程为xy30,24sin 2cos ,曲线C的直角坐标方程为(x1)2(y2)25.4分(2)将直线l的参数方程(t为参数)代入曲线C:(x1)2(y2)25,得到t22t30,8分t1t23,|PA|PB|t1t2|3.10分思想与方法1参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos2sin21,1tan2.2利用曲线的参数方程求解两曲线间的最值问题是行之有效的好方法3将参数方程化为普通方程,将极坐标方程化为直角坐

11、标方程,然后在直角坐标系下对问题求解,化生为熟,充分体现了转化与化归思想的应用易错与防范1将参数方程化为普通方程时,要注意两种方程的等价性在消去参数的过程中,要注意x,y的取值范围2确定曲线的参数方程时,一定要根据实际问题的要求确定参数的取值范围,必要时通过限制参数的范围去掉多余的解3设过点M(x0,y0)的直线l交曲线C于A,B两点,若直线的参数方程为(t为参数)注意以下两个结论的应用:(1)|AB|t1t2|;(2)|MA|MB|t1t2|.课时分层训练(六十八)参数方程1在平面直角坐标系xOy中,圆C的参数方程为(t为参数)在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为

12、极点,以x轴非负半轴为极轴)中,直线l的方程为sinm(mR). 【导学号:31222442】(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值解(1)消去参数t,得到圆C的普通方程为(x1)2(y2)29.2分由sinm,得sin cos m0,所以直线l的直角坐标方程为xym0.4分(2)依题意,圆心C到直线l的距离等于2,8分即2,解得m32.10分2极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴已知直线l的参数方程为(t为参数),曲线C的极坐标方程为sin28cos . 【导学号:31222443】(1)求曲线C的

13、直角坐标方程;(2)设直线l与曲线C交于A,B两点,求弦长|AB|.解(1)由sin28cos ,得2sin28cos ,故曲线C的直角坐标方程为y28x.4分(2)将直线l的方程化为标准形式6分代入y28x,并整理得3t216t640,t1t2,t1t2.8分所以|AB|t1t2|.10分3(2016全国卷)在直角坐标系xOy中,圆C的方程为(x6)2y225.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|,求l的斜率解(1)由xcos ,ysin 可得圆C的极坐标方程为212cos 110.4分(

14、2)在(1)中建立的极坐标系中,直线l的极坐标方程为(R)设A,B所对应的极径分别为1,2,将l的极坐标方程代入C的极坐标方程得212cos 110,于是1212cos ,1211.8分|AB|12|.由|AB|得cos2,tan .所以l的斜率为或.10分4(2014全国卷)在直角坐标系xOy中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ,.(1)求C的参数方程;(2)设点D在C上,C在D处的切线与直线l:yx2垂直,根据(1)中你得到的参数方程,确定D的坐标解(1)C的普通方程为(x1)2y21(0y1)可得C的参数方程为(t为参数,0t).4分(2)

15、设D(1cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆因为C在点D处的切线与l垂直,所以直线CD与l的斜率相同,tan t,t.8分故D的直角坐标为,即.10分5(2017湖北七市三联)在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sin,曲线C2的极坐标方程为2acos(a0)(1)求直线l与曲线C1的交点的极坐标(,)(0,02);(2)若直线l与C2相切,求a的值解(1)曲线C1的普通方程为yx2,x,直线l的直角坐标方程为xy2,联立解得或(舍去)故直线l与曲线C1的交点的

16、直角坐标为(1,1),其极坐标为.4分(2)曲线C2的直角坐标方程为x2y22ax2ay0,即(xa)2(ya)22a2(a0).8分由直线l与C2相切,得a,故a1.10分6(2017福州质检)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为sin.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|PB|.解(1)由消去参数,得y21,即C的普通方程为y21.2分由sin,得sin cos 2,(*)将代入(*),化简得yx2,所以直线l的倾斜角为.4分(2)由(1)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),代入y21并化简,得5t218t270,(18)245271080,8分设A,B两点对应的参数分别为t1,t2,则t1t20,t1t20,所以t10,t20,所以|PA|PB|t1|t2|(t1t2).10分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3