1、一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合(其中为虚数单位),则( )A B C D【答案】D【解析】考点:1.复数的相关概念;2.集合的运算.11112.已知,则( )A B C D【答案】C【解析】试题分析:由得,则.故本题答案选C.1考点:两角和的余弦公式3.下列命题正确的是( )A已知实数,则“”是“”的必要不充分条件B“存在,使得”的否定是“对任意,均有”C函数的零点在区间内D设是两条直线,是空间中两个平面,若,则【答案】C【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件【
2、方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),最后下结论(根据推导关系及定义下结论). 等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.4.已知在数轴上0和3之间任取一实数,则使“”的概率为( )A B C D【答案】C【解析】试题分析:由得,由几何概型可得所求概率为.故本题答案选C.考点:几何概型5.已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双
3、曲线的离心率是( )A B2 C D【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.6.在张邱建算经中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末
4、一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A33% B49% C62% D88%【答案】B7.若等边三角形的边长为2,为的中点,且上一点满足,则当取最小值时,( )A6 B5 C4 D3【答案】D【解析】试题分析:由题知,;设,则,可得,当取最小值时,最小值在时取到,此时,将代入,则.故本题答案选D.考点:1.向量的线性运算;2.基本不等式8.已知函数与轴的交点为,且图像上两对称轴之间的最小距离为,则使成立的的最小值为( )1111A B C D【答案】A【解析】考点:三角函数的图象性质9.执行下面的程序框图,若输入,则输出的结果为( )A201
5、5 B2016 C2116 D2048【答案】D111【解析】试题分析:由于,由程序框图可得对循环进行加运算,可以得到,从而可得,由于,则进行循环,最终可得输出结果为1考点:程序框图10.已知均为正实数,且,则( )A B C D【答案】A【解析】考点:对数函数,指数函数性质11.已知三棱锥外接球的表面积为32,三棱锥的三视图如图所示,则其侧视图的面积的最大值为( )A4 B C8 D【答案】A【解析】考点:三视图【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根
6、据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.12.已知函数,若存在常数使得方程有两个不等的实根(),那么的取值范围为( )A B C D【答案】C【解析】试题分析:由图可知存在常数,使得方程有两上不等的实根,则,由,可得,由,可得(负舍),即有,即,则.故本题答案选C.考点:数形结合【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比
7、例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.第卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分)13.已知函数,则_.【答案】【解析】考点:构造法求函数值14.抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则外接圆的标准方程为_.【答案】或【解析】试题分析:由题意知,设,由,则切线方程为,代入得,则,可得,则外接圆以为直径,则或.故本题答案填或1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质15.已知满足,则的取值范围为_.【答案】【解析】 考点:简单的线性规划【方法点睛】本
8、题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1)表示点与原点的距离;(2)表示点与点间的距离;(3)可表示点与点连线的斜率;(4)表示点与点连线的斜率.16.已知各项都不相等的等差数列,满足,且,则数列项中的最大值为_.【答案】【解析】考点:1.等差数列的通项公式;2.等差数列的前项和【方法点睛】本题主要考查等差数列的通项公式和前项和公式.等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前项和公式在解题中起到变量
9、代换作用,而是等差数列的两个基本量,用它们表示已知和未知是常用方法.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知函数.(1)求函数在上的最大值和最小值;(2)在中,角所对的边分别为,满足,求的值.1111【答案】(1)最大值为,最小值为;(2).【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简再利用的性质可求在上的最值;(2)利用,可得,再由余弦定理可得,再据正弦定理可得.1试题解析:(2)因为,即,又在中,由余弦定理得,所以.由正弦定理得:,即,所以.考点:1.辅助角公式;2.性质;3.正余
10、弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.18.(本小题满分12分)如图(1),在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且.(1)求证:平面 平面;(2)当 异面直线与所成的角为时,求折起的角度.【答案】(1)证明见解析;(2)【解析】试题分析:(1)可先证,从而得到平面,再证,可得平面,
11、由,可证明平面平面;(2)由,取的中点,连接,可得即为异面直线与所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1试题解析:(2)因为,取的中点,连接,所以,又,所以,从而四边形为平行四边形,所以,得;同时,因为,所以,故折起的角度.考点:点、线、面之间的位置关系的判定与性质19.(本小题满分12分)某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.(1)求总人数和分数在110-115分的人数;(2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;(3)为了分析某个学生的学习状态,对其下
12、一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:,.【答案】(1),;(2);(3).【解析】试题解析:(1)分数在100-110内的学生的频率为,所以该班总人数为,分数在110-115内的学生的频率为,分数在110-115内的人数.(2)由题意分数在110-115内有6名学生,其中女生有
13、2名,设男生为,女生为,从6名学生中选出3人的基本事件为:,共15个.其中恰 好含有一名女生的基本事件为,共8个,所以所求的概率为.(3);由于与之间具有线性相关关系,根据回归系数公式得到,线性回归方程为,当时,.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,一定要将题目中所给数据与公式中的相对应,再进一步求解.在求解过程中,由于的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为常数项为这与一次函数的习惯表示不同.2
14、0.(本小题满分12分)设椭圆的离心率,圆与直线相切,为坐标原点.(1)求椭圆的方程;(2)过点任作一直线交椭圆于两点,记,若在线段上取一点,使得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由.【答案】(1);(2)点在定直线上.【解析】试题解析:(1)由,又,解得,所以椭圆的方程为.设点的坐标为,则由,得,解得又,从而,故点在定直线上.考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系.21.(本小题满分12分)已知函数.(1)当时,讨论函数在区间上零点的个数;(2)证明:当,时,.【答案】(1)当时,有个公共点,当时,有个公共点,当
15、时,有个公共点;(2)证明见解析.【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得,构造函数,利用求出单调性可知在的最小值,根据原函数的单调性可讨论得零点个数;(2)构造函数,利用导数可判断的单调性和极值情况,可证明.1试题解析:当时,有0个公共点;当,有1个公共点;当有2个公共点.(2)证明:设,则,令,则,因为,所以,当时,;在上是减函数,当时,在上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的
16、个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲1111如图,点为圆上一点,为圆的切线,为圆的直径,.(1)若交圆于点,求的长;(2)若连接并延长交圆
17、于两点,于,求的长.【答案】(1);(2).【解析】试题分析:(1)由切线的性质可知,由相似三角形性质知,可得;(2)由切割线定理可得,求出,再由,求出的值. 1试题解析:(1)因为是圆的切线,是圆的直径,所以,所以,设,又因为,所以,所以,解得.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)求曲线上任意一点到直线的距离的最大值.【答案】(1)参数方程为,;(
18、2).【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,所以参数方程为,直线的普通方程为.(2)曲线上任意一点到直线的距离为,所以曲线上任意一点到直线的距离的最大值为.考点:1.极坐标方程;2.参数方程.24.(本小题满分10分)选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)当时,求的取值范围.【答案】(1);(2).【解析】试题解析:(1)因为,所以,即,当时,从而;当时,从而不等式无解;当时,从而;综上,不等式的解集为.(2)由,得,因为,所以当时,;当时,记不等式的解集为,则,故,所以的取值范围是.考点:1.含绝对值的不等式;2.分类讨论.