收藏 分享(赏)

江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx

上传人:a**** 文档编号:316367 上传时间:2025-11-26 格式:DOCX 页数:19 大小:281.43KB
下载 相关 举报
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第1页
第1页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第2页
第2页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第3页
第3页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第4页
第4页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第5页
第5页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第6页
第6页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第7页
第7页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第8页
第8页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第9页
第9页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第10页
第10页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第11页
第11页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第12页
第12页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第13页
第13页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第14页
第14页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第15页
第15页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第16页
第16页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第17页
第17页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第18页
第18页 / 共19页
江苏省无锡市新区2022年中考数学一模试卷(解析版) 苏教版.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 2022年江苏省无锡市新区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分在每小题所给出的四个选项中,只有一项是正确的,把答案直接填写在答题卡上相应的位置)1(3分)(2022惠山区一模)1的相反数是()A0B1C1D1考点:相反数分析:根据相反数定义可直接得到答案解答:解:1的相反数是1,故选:C点评:此题主要考查了相反数的概念:只有符号不同的两个数叫做互为相反数2(3分)(2022梧州)下列运算正确的是()Aa2a3=a6Ba2+a2=a4C(a2)3=a6Da3a=a考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方分析:根据同底数幂相乘,底数不变指

2、数相加;合并同类项的法则,只把系数相加减,字母与字母的次数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解解答:解:A、应为a2a3=a2+3=a5,故本选项错误;B、应为a2+a2=2a2,故本选项错误;C、(a2)3=a23=a6,正确;D、应为a3a=a31=a2,故本选项错误故选C点评:本题综合考查了合并同类项、同底数幂的乘法和除法、幂的乘方的运算性质,需熟练掌握且区分清楚,才不容易出错3(3分)(2022河池)函数y=的自变量x的取值范围是()Ax1Bx1Cx1Dx1考点:函数自变量的取值范围专题:计算题分析:根据二次根式的性质,被开

3、方数大于或等于0,可以求出x的范围解答:解:由题意得x10,解得x1故选C点评:考查求函数自变量的取值;用到的知识点为:二次根式的被开方数为非负数4(3分)(2022泉州)若两圆的半径分别为1cm和5cm,圆心距为4cm,则两圆的位置关系是()A内切B相交C外切D外离考点:圆与圆的位置关系分析:两圆的位置关系有:相离(dR+r)、相切(外切:d=R+r或内切:d=Rr)、相交(RrdR+r)此题r2r1=51=4=圆心距,所以两圆内切解答:解:两圆的半径分别为1cm和5cm,圆心距为4cm,r2r1=51=4=圆心距,两圆内切故选A点评:本题主要考查两圆的位置关系两圆的位置关系有:相离(dR+

4、r)、相切(外切:d=R+r或内切:d=Rr)、相交(RrdR+r)5(3分)(2022惠山区一模)小丽在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3张,50元的9张,10元的23张,5元的10张在这些不同面额的钞票中,众数是()A10B23C50D100考点:众数分析:根据众数的定义,找到出现次数最多的数即为众数解答:解:在这组数据中,10元出现了23次,出现次数最多,是众数,故选A点评:本题考查了众数,要知道,一组数据中出现次数做多的数叫做众数6(3分)(2022内江)下列图形中,既是轴对称图形又是中心对称图形的有()A4个B3个C2个D1个考点:中心对称图

5、形;轴对称图形分析:根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出解答:解:从左到右第一个和第三个图形旋转180后不能与原图形重合,此图形不是中心对称图形,但它们是轴对称图形;从左到右第二个和第四个图形旋转180后能与原图形重合,此图形不是中心对称图形,是轴对称图形;既是轴对称又是中心对称图形的有两个,故选C点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键7(3分)(2022惠山区一模)下列命题中错误的是()A两组对边分别相等的四边形是平行四边形B对角线相等的平行四边形是矩形C一组邻边相等的平行四边形是

6、菱形D顺次连接矩形四条边中点所得的四边形是正方形考点:正方形的判定;平行四边形的判定;菱形的判定;矩形的判定;命题与定理分析:根据矩形、菱形、平行形四边形的性质与判定分别得出各选项是否正确即可解答:解:A两组对边分别相等的四边形是平行四边形,根据平行四边形的判定得出,此选项正确,不符合题意;B对角线相等的平行四边形是矩形;根据矩形的判定得出,此选项正确,不符合题意;C一组邻边相等的平行四边形是菱形;根据菱形的判定得出,此选项正确,不符合题意;D顺次连接矩形四条边中点所得的四边形是菱形;故此选项错误,符合题意故选:D点评:此题主要考查了矩形、菱形、平行形四边形的性质与判定,正确区分它们是解题关键

7、8(3分)(2022怀化)如图,在RtABC中,ACB=90,AC=8,BC=6,将ABC绕AC所在的直线k旋转一周得到一个旋转体,则该旋转体的侧面积为()A30B40C50D60考点:圆锥的计算专题:压轴题分析:易利用勾股定理求得母线长,那么圆锥的侧面积=底面周长母线长2解答:解:由勾股定理得AB=10,BC=6,则圆锥的底面周长=12,旋转体的侧面积=1210=60,故选D点评:本题利用了勾股定理,圆的周长公式和扇形面积公式求解9(3分)(2022惠山区一模)如图,已知双曲线经过RtOAB斜边OA的中点D,且与直角边AB相交于点C则AOC的面积为()A9B6C4.5D3考点:反比例函数系数

8、k的几何意义;三角形中位线定理;相似三角形的判定与性质分析:由反比例函数的比例系数k的几何意义,可知BOC的面积=|k|,求出k值,由点A的坐标为(2x,2y),根据三角形的面积公式,可知AOB的面积=12,再利用AOC的面积=AOB的面积BOC的面积,进而求出即可解答:解:OA的中点是D,双曲线y=经过点D,k=xy=3,D点坐标为:(x,y),则A点坐标为:(2x,2y),BOC的面积=|k|=1.5又AOB的面积=2x2y=6,AOC的面积=AOB的面积BOC的面积=61.5=4.5故选C点评:本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴

9、、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|10(3分)(2022重庆)已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE过点A作AE的垂线交DE于点P若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是()ABCD考点:正方形的性质;全等三角形的判定;勾股定理的应用专题:压轴题分析:利用同角的余角相等,易得EAB=PAD,再结合已知条件利用SAS可证两三角形全等;利用中的全等,可得APD=AEB,结合三角形的外角的性质,易得BEP=90,即可证;过B作BFAE,交AE的

10、延长线于F,利用中的BEP=90,利用勾股定理可求BE,结合AEP是等腰直角三角形,可证BEF是等腰直角三角形,再利用勾股定理可求EF、BF;在RtABF中,利用勾股定理可求AB2,即是正方形的面积;连接BD,求出ABD的面积,然后减去BDP的面积即可解答:解:EAB+BAP=90,PAD+BAP=90,EAB=PAD,又AE=AP,AB=AD,APDAEB;故此选项成立;APDAEB,APD=AEB,又AEB=AEP+BEP,APD=AEP+PAE,BEP=PAE=90,EBED;故此选项成立;过B作BFAE,交AE的延长线于F,AE=AP,EAP=90,AEP=APE=45,又中EBED,

11、BFAF,FEB=FBE=45,又BE=,BF=EF=,故此选项不正确;如图,连接BD,在RtAEP中,AE=AP=1,EP=,又PB=,BE=,APDAEB,PD=BE=,SABP+SADP=SABDSBDP=S正方形ABCDDPBE=(4+)=+故此选项不正确EF=BF=,AE=1,在RtABF中,AB2=(AE+EF)2+BF2=4+,S正方形ABCD=AB2=4+,故此选项正确;故选D点评:本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识二、填空题(本大题共8小题,每小题2分,共16分不需要写出解答过程,只需把答案直接填写在答题卡上相应的位置)1

12、1(2分)(2022恩施州)25的平方根是5考点:平方根分析:如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题解答:解:(5)2=2525的平方根5故答案为:5点评:本题主要考查了平方根定义的运用,比较简单12(2分)(2022惠山区一模)据统计,截止到5月31日上海世博会累计入园人数803.27万人803.27万这个数字(保留两位有效数字)用科学记数法表示为 8.0106人考点:科学记数法与有效数字分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值是易错点,由于803.27万有7位,所以可以确定n=71=6有效数字的计算方法是:从左边第一个不是0

13、的数字起,后面所有的数字都是有效数字用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关解答:解:803.27万=8.0327001068.0106故答案为:8.0106点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法13(2分)(2022江西)分解因式:x24=(x+2)(x2)考点:因式分解-运用公式法专题:压轴题分析:直接利用平方差公式进行因式分解即可解答:解:x24=(x+2)(x2)点评:本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反14(2分)(2022惠山区一模)方程:的解是 x=4考点:

14、解分式方程专题:计算题分析:方程两边同乘以x2,移项,再检验即可解答:解:方程两边同乘以x2得,2=x2,移项得,x=4,检验,当x=4时,x2=20,x=4是原方程的根点评:此题主要考查解分式方程这一知识点,一定向学生强调解分式方程注意要验根,此题比较简单,属于基础题15(2分)(2022安徽)如图,ABC内接于O,AC是O的直径,ACB=50,点D是上一点,则D=40度考点:圆周角定理专题:压轴题分析:欲求D的度数,需先求出同弧所对的A的度数;RtABC中,已知ACB的度数,即可求得A,由此得解解答:解:AC是O的直径,ABC=90;A=1809050=40,D=A=40点评:此题主要考查

15、圆周角定理的应用16(2分)(2022抚顺)将一个含30角的三角板和一个含45角的三角板如图摆放,ACB与DCE完全重合,C=90,A=45,EDC=60,AB=4,DE=6,则EB=考点:勾股定理;等腰三角形的性质专题:压轴题分析:根据直角三角形的性质,求得BC,再求得EC,由此可以求出CE,再利用BE=CEBC即可求出EB解答:解:在RtABC中,AB=4,A=45,BC=4=4在RtEDC中,EDC=60,DE=6,CE=DEsinEDC=6=3BE=CEBC=34故填空答案:34点评:本题利用了直角三角形的性质和等腰三角形的性质求解17(2分)(2022惠山区一模)如图,在锐角ABC中

16、,AB=,BAC=45,BAC的平分线交BC于点D,M、N分别是AD和AB边上的动点,则BM+MN的最小值是6考点:轴对称-最短路线问题专题:动点型分析:从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值解答:解:如图,作BHAC,垂足为H,交AD于M点,过M点作MNAB,垂足为N,则BM+MN为所求的最小值因为BAC的平分线交BC于点D,由角平分线性质可知,MH=MN,当BH是点B到直线AC的距离时(垂线段最短),AB=,BAC=45,BH=ABsin45=6,所以BM+MN的最小值是BM+MN=BM+MH=BH=6故答案为6点评:本题考查了轴对称的应用易错易混点:

17、解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点18(2分)(2022宝应县二模)如图,在RtABC中,C=90,ABC=45,AB=6,点D在AB边上,点E在BC边上(不与点B、C重合)若DA=DE,则AD的取值范围是66AD3考点:等腰三角形的判定与性质;等腰直角三角形专题:计算题;压轴题分析:以D为圆心,AD的长为半径画圆,当圆与BC相切时,AD最小,与线段BC相交且交点为B或C时,AD最大,分别求出即可得到范围解

18、答:解:以D为圆心,AD的长为半径画圆当圆与BC相切时,DEBC时,ABC=45,DE=BD,AB=6,设AD=DE=x,则DB=6x,(6x)=xx=AD=66;当圆与BC相交时,若交点为B或C,则AD=AB=3,AD的取值范围是66AD3点评:本题考查了等腰三角形的判定与性质,利用边BC与圆的位置关系解答,分清AD最小和最大的两种情况是解决本题的关键三、解答题(本大题共10小题,共84分请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19(8分)(2022惠山区一模)计算:(1);(2)考点:特殊角的三角函数值;分式的加减法;负整数指数幂专题:计算题分析:(1)分别根据

19、二次根式的化简、特殊角的三角函数值、负整数指数幂及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先通分,再分母不变,分子相加即可解答:解:(1),=32+4+1,=3+5,=+5;(2),=+,=,=,=故答案为:+5,点评:本题考查的是二次根式的化简、特殊角的三角函数值、负整数指数幂、绝对值的性质及分式的加减法,在解答(2)时一定要注意把最后结果化为最简形式20(8分)(2022惠山区一模)(1)解方程:3x26x1=0;(2)解不等式组:考点:解一元二次方程-公式法;解二元一次方程组专题:计算题分析:(1)先计算出=(6)243(1)=48,然后代入一元二次方程的求根

20、公式中进行计算;(2)分别解两个不等式得到x1和x3,然后根据“大于小的小于大的取中间”即可得到不等式组的解集解答:(1)解:a=3,b=6,c=1,=(6)243(1)=48,x=,x1=,x2=;(2),由得x1,由得x3,1x3点评:本题解一元二次方程公式法:一元二次方程ax2+bx+c=0(a、b、c为常数,a0)的求根公式为x=(b24ac0)也考查了解一元一次不等式组21(6分)(2022保康县二模)小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为

21、4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则考点:游戏公平性;列表法与树状图法专题:计算题分析:(1)用列表法列举出所以出现的情况,再用概率公式求出概率即可(2)游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两纸牌上的数字之和为偶数或奇数时的概率是否相等,求出概率比较,即可得出结论解答:解:(1)列表如下

22、和123545679678911789101289101113共有16 种等可能的结果,和为偶数的有6种,故小莉去的概率为=(2)不公平,因为P(哥哥去)=,P(小莉去)=,哥哥去的可能性大,所以不公平可以修改为:和大于9,哥哥去,小于9,小莉去,等于9,重新开始点评:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平22(6分)(2022河池)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分100分;B

23、级:75分89分;C级:60分74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级的学生人数占全班学生人数的百分比是;(3)扇形统计图中A级所在的扇形的圆心角度数是;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为人考点:扇形统计图;用样本估计总体;条形统计图专题:图表型分析:(1)利用A类有10人,占总体的20%,求出总人数,再求出D级的学生人数;(2)利用各部分占总体的百分比之和为1,即可求出D级的学生人数占全班学生人数的百分比;(3)利用A级所占的百分比即可求出A级所在的扇形的圆心角度数;(4)用样本估计总体,利用样本中A、B级所占

24、的百分比及可求出A级和B级的学生人数解答:解:(1)读图可得:A类有10人,占总体的20%,所以总人数为1020%=50人,则D级的学生人数为50102312=5人据此可补全条形图;(2分)(2)在扇形统计图中,因为各部分占总体的百分比之和为1,所以D级的学生人数占全班学生人数的百分比是146%24%20%=10%;(4分)(3)读扇形图可得:A级占20%,所在的扇形的圆心角为36020%=72;(6分)(4)读扇形图可得:A级和B级的学生占46%+20%=66%;故九年级有500名学生时,体育测试中A级和B级的学生人数约为50066%=330人(8分)点评:本题考查的是条形统计图和扇形统计图

25、的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,并且扇形统计图能直接反映部分占总体的百分比大小23(8分)(2022本溪)如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面已知山坡的坡角AEF=23,量得树干倾斜角BAC=38,大树被折断部分和坡面所成的角ADC=60,AD=4m(1)求CAE的度数;(2)求这棵大树折断前的高度(结果精确到个位,参考数据:=1.4,=1.7,=2.4)考点:解直角三角形的应用-坡度坡角问题专题:应用题分

26、析:本题可通过作辅助线构造直角三角形来解决问题,(1)如果延长BA交EF于点G,那么BGEF,CAE=180BACEAG,BAC的度数以及确定,只要求出GAE即可直角三角形GAE中E的度数已知,那么EAG的度数就能求出来了,CAE便可求出(2)求树折断前的高度,就是求AC和CD的长,如果过点A作AHCD,垂足为H有CDA=60,通过构筑的直角三角形AHD和ACH便可求出AD、CD的值解答:解:(1)延长BA交EF于点G在RtAGE中,E=23,GAE=67又BAC=38,CAE=1806738=75(2)过点A作AHCD,垂足为H在ADH中,ADC=60,AD=4,cosADC=,DH=2si

27、nADC=,AH=2在RtACH中,C=1807560=45,AC=2,CH=AH=2AB=AC+CD=2+2+210(米)答:这棵大树折断前高约10米点评:本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决24(8分)(2022宁夏)已知:如图,ABC中,AB=AC,以AB为直径的O交BC于点P,PDAC于点D(1)求证:PD是O的切线;(2)若CAB=120,AB=2,求BC的值考点:切线的判定专题:综合题分析:(1)连接OP,要证明PD是O的切线只要证明DPO=90即可;(2)连接AP,根据已知可求得BP的长,从而

28、可求得BC的长解答:(1)证明:连接AP,OP,AB=AC,C=B,又OP=OB,OPB=B,C=OPB,OPAD;又PDAC于D,ADP=90,DPO=90,以AB为直径的O交BC于点P,PD是O的切线(2)解:连接AP,AB是直径,APB=90;AB=AC=2,CAB=120,BAP=60,BP=,BC=2点评:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可25(8分)(2022惠山区一模)一公司面向社会招聘人员,要求如下:对象:机械制造类和规划设计类人员共150名;机械类人员工资为600元/月,规划设计类人员为1000元/月(1)

29、本次招聘规划设计人员不少于机械制造人员的2倍,若要使公司每月所付工资总额最少,则这两类人员各招多少名?此时最少工资总额是多少?(2)在保证工资总额最少条件下,因这两类人员表现出色,公司领导决定另用20万元奖励他们,其中机械人员人均奖金不得超过规划人员的人均奖金,但不低于200元,试问规划设计类人员的人均奖金的取值范围考点:一次函数的应用专题:应用题分析:(1)设机械制造人员招x名,所付工资总额为w元,则规划设计人员为2x,由“规划设计人员不少于机械制造人员的2倍”可得x的取值范围,由题意可得w关于x的表达式(2)设机械类人均奖金为a元,规划设计类人均奖金为b元由题意得:,求解可得解答:解:(1

30、)设机械制造人员招x名,所付工资总额为w元,则由题意得:w=600x+1000(150x)(1分)=400x+150000150x2xx50当x=50时,w有最小值为40050+150000=130000元本次招聘机械制造人员50名,规划设计人员100名,最少工资总额是130000元(2)设机械类人均奖金为a元,规划设计类人均奖金为b元由“其中机械人员人均奖金不得超过规划人员的人均奖金,但不低于200元”和“总额为20万”得:,解得b1900所以规划设计类人员人均奖金范围为元至1900元之间点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题注意利用一次函数求最值时,关键是应

31、用一次函数的性质26(10分)(2022惠山区一模)如图甲,在ABC中,ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF解答下列问题:(1)如果AB=AC,BAC=90,当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等当点D在线段BC的延长线上时,如图丙,中的结论是否仍然成立,为什么?(2)如果ABAC,BAC90点D在线段BC上运动试探究:当ABC满足一个什么条件时,CFBC(点C、F重合除外)?并说明理由考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质专题:证明题;压轴题分析:(1)当点D

32、在BC的延长线上时的结论仍成立由正方形ADEF的性质可推出DABFAC,所以CF=BD,ACF=ABD结合BAC=90,AB=AC,得到BCF=ACB+ACF=90度即CFBD(2)当ACB=45时,过点A作AGAC交CB或CB的延长线于点G,则GAC=90,可推出ACB=AGC,所以AC=AG,由(1)可知CFBD解答:解:(1)CFBD,CF=BD (2分)故答案为:垂直、相等成立,理由如下:(3分)FAD=BAC=90BAD=CAF在BAD与CAF中,BADCAF(SAS)(5分)CF=BD,ACF=ACB=45,BCF=90CFBD (7分)(2)当ACB=45时可得CFBC,理由如下

33、:(8分)过点A作AC的垂线与CB所在直线交于G (9分)则ACB=45AG=AC,AGC=ACG=45AG=AC,AD=AF,GAD=GACDAC=90DAC,FAC=FADDAC=90DAC,GAD=FAC,GADCAF(SAS) (10分)ACF=AGD=45GCF=GCA+ACF=90CFBC (12分)点评:本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件27(10分)(2022惠山区一模)已知二次函数y

34、=ax2+bx+3的图象经过(1,),(2,)两点,与x轴的两个交点的右边一个交点为点A,与y轴交于点B(1)求此二次函数的解析式并画出这个二次函数的图象;(2)求线段AB的中垂线的函数解析式考点:二次函数综合题分析:(1)将(1,),(2,)代入y=ax2+bx+3,利用待定系数法求得二次函数的解析式,再根据二次函数的性质即可画出这个二次函数的图象;(2)根据二次函数的解析式为y=x2+x+3,求出A、B两点的坐标连接AB,作线段AB的中垂线MN,交AB于M,交OA于N,则点M为AB的中点,根据中点坐标公式得到M点坐标为(2,)设N点坐标为(x,0),则ON=x,根据线段垂直平分线的性质得出

35、AN=BN=4x,然后在直角OBN中,由勾股定理得出OB2+ON2=BN2,求出x的值,得到N点坐标为(,0)设直线MN的解析式为y=mx+n,将M,N两点的坐标代入,运用待定系数法即可求解解答:解:(1)二次函数y=ax2+bx+3的图象经过(1,),(2,)两点,将两点坐标代入二次函数解析式,得:,解得:,此二次函数的解析式为y=x2+x+3图象如右所示:(2)解方程x2+x+3=0,即4x213x12=0,解得x1=4,x2=抛物线y=x2+x+3与x轴的两个交点的右边一个交点为点A,与y轴交于点B,A点坐标为(4,0),B点坐标为(0,3)连接AB,作线段AB的中垂线MN,交AB于M,

36、交OA于N,连接BN,则点M为AB的中点,其坐标为(2,)设N点坐标为(x,0),则ON=x,AN=BN=4x,在OBN中,BON=90,OB=3,ON=x,BN=4x,OB2+ON2=BN2,即32+x2=(4x)2,解得x=,N点坐标为(,0)设直线MN的解析式为y=mx+n,将M(2,),N(,0)代入,得,解得,直线MN的解析式为y=x即线段AB的中垂线的函数解析式为y=x点评:本题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,二次函数的图象与性质,二次函数图象上点的坐标特征,勾股定理,中点坐标公式,线段垂直平分线的性质,综合性较强,难度适中28(12分)(

37、2022兰州)如图,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t

38、的值;若不能,请说明理由考点:二次函数综合题;坐标与图形性质;一次函数的图象;三角形的面积;直角三角形全等的判定;正方形的性质;相似三角形的判定与性质专题:压轴题分析:(1)根据题意,观察图象可得x与t的关系,进而可得答案;(2)过点B作BFy轴于点F,BEx轴于点E,易得BF=8,OF=BE=4,进而在RtAFB中,由勾股定理可得AB=10;进一步易得ABFBCH,再根据BH与OG的关系,可得C的坐标;(3)过点P作PMy轴于点M,PNx轴于点N,易得APMABF;进而可得对应边的比例关系,解可得AM、PM与t的关系,由三角形面积公式,可得答案(4)此题需要分类讨论:当P在BC上时,求得t的

39、值;当P在CD上时,求得t的值;即当t=时;当P在BA上时,求得t的值解答:解:(1)Q(1,0)(1分)Q的图象是一条直线,且过点(11,0)且点P运动速度每秒钟1个单位长度(2分)(2)过点B作BFy轴于点F,BEx轴于点E,则BF=8,OF=BE=4AF=104=6在RtAFB中,AB=10,(3分)过点C作CGx轴于点G,与FB的延长线交于点HABC=90,AB=BC,ABFBCHBH=AF=6 CH=BF=8OG=FH=8+6=14,CG=8+4=12所求C点的坐标为(14,12)(4分)(3)过点P作PMy轴于点M,PNx轴于点N,则APMABF,AM=t,PM=t,PN=OM=1

40、0t,ON=PM=t设OPQ的面积为S(平方单位),S=(10t)(1+t)=5+tt2(0t10),(5分)说明:未注明自变量的取值范围不扣分a=,当t=时,OPQ的面积最大(6分)此时P的坐标为(,)(7分)(4)OP与PQ相等,组成等腰三角形,即当P点的横坐标等于Q点的横坐标的一半时,当P在BC上时,8+(t10)=(t+1),解得:t=15(舍去)当P在CD上时,14(t20)=(t+1),解得:t=,即当t=时,OP与PQ相等当P在BA上时,t=,OP与PQ相等,(9分)当t=或t=时,OP与PQ相等点评:本题是一道动态解析几何题,对学生的运动分析,数形结合的思想作了重点的考查,有一定的难度19

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1