1、课时分层作业(十二)等差数列前n项和的综合应用(建议用时:60分钟)一、选择题1数列an为等差数列,它的前n项和为Sn,若Sn(n1)2,则的值是()A2 B1 C0 D1B等差数列前n项和Sn的形式为Snan2bn,1.2已知Sn是等差数列an的前n项和,且S6S7S5,有下列四个命题:d0;S12S7,a7S5,a6a70,a60,d0,正确;S12(a1a12)6(a6a7)0,不正确;Sn中最大项为S6,不正确故正确的是.3若数列an的前n项和是Snn24n2,则|a1|a2|a10|等于()A15 B35 C66 D100C易得an|a1|1,|a2|1,|a3|1,令an0则2n5
2、0,n3.|a1|a2|a10|11a3a102(S10S2)2(1024102)(22422)66.4设数列an是等差数列,若a1a3a5105,a2a4a699,以Sn表示an的前n项和,则使Sn达到最大值的n是()A18 B19 C20 D21Ca1a3a51053a3,a335,a2a4a6993a4,a433,d2,ana3(n3)d412n,令an0,412n0,n0,则使得前n项和Sn取得最小值的正整数n的值是 6或7由|a5|a9|且d0得a50,且a5a902a112d0a16d0,即a70,故S6S7且最小8首项为正数的等差数列的前n项和为Sn,且S3S8,当n 时,Sn取
3、到最大值5或6S3S8,S8S3a4a5a6a7a85a60,a60,a10,a1a2a3a4a5a60,a70.故当n5或6时,Sn最大三、解答题9已知等差数列an中,a19,a4a70.(1)求数列an的通项公式;(2)当n为何值时,数列an的前n项和取得最大值?解(1)由a19,a4a70,得a13da16d0,解得d2,ana1(n1)d112n.(2)法一:a19,d2,Sn9n(2)n210n(n5)225,当n5时,Sn取得最大值法二:由(1)知a19,d20,n6时,an0.当n5时,Sn取得最大值10若等差数列an的首项a113,d4,记Tn|a1|a2|an|,求Tn.解a
4、113,d4,an174n.当n4时,Tn|a1|a2|an|a1a2anna1d13n(4)15n2n2;当n5时,Tn|a1|a2|an|(a1a2a3a4)(a5a6an)S4(SnS4)2S4Sn2(15n2n2)2n215n56.Tn1已知等差数列an的前n项和为Sn,S440,Sn210,Sn4130,则n()A12B14C16D18BSnSn4anan1an2an380,S4a1a2a3a440,所以4(a1an)120,a1an30,由Sn210,得n14.2设等差数列an的前n项和为Sn,Sm12,Sm0,Sm13,则m等于()A3 B4 C5 D6CamSmSm12,am1
5、Sm1Sm3,所以公差dam1am1,由Sm0,得a12,所以am2(m1)12,解得m5,故选C.3已知数列:1,则其前n项和等于 通项an2,所求的和为2(1)()()2.4设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是 ,项数是 117设等差数列an的项数为2n1,S奇a1a3a2n1(n1)an1,S偶a2a4a6a2nnan1,所以,解得n3,所以项数2n17,S奇S偶an1,即a4443311为所求中间项5已知数列an的前n项和为Sn,数列an为等差数列,a112,d2.(1)求Sn,并画出Sn(1n13)的图象;(2)分别求Sn单调递增、单调递减的n的取值范围,并求Sn的最大(或最小)的项;(3)Sn有多少项大于零?解(1)Snna1d12n(2)n213n.图象如图(2)Snn213n,nN*,当n6或7时,Sn最大;当1n6时,Sn单调递增;当n7时,Sn单调递减Sn有最大值,最大项是S6,S7,S6S742.(3)由图象得Sn中有12项大于零故当这幢宿舍楼的楼高层数为20层时,费用最少,最少总费用为1 000A元