1、 参考答案:1. A2.C3.B4.B5.D6.C7.C8.A9.ACD10.ABD11.ABD12.BC113.14.5015.1616.164217.解:(1)由a (an+1 -3) = a (a +3)得a2n+1- an2= 3an+1 +3a,nn+1nn(an+1 +a )(an+1 -a ) = 3(an+1 +a ).2分nnn又a 0,a +an+1 0,an+1-a = 3数列a 是以公差为 3的等差数列nnnn又S =18,3a +9 =18,a = 3,a = 3n.4分311n11 1 - 1 .6分(2)由(1)知b = (3n)3(n +1) = n9 n n
2、+1 T = b +b +b +L+bnn1231 1 1 - 1 1 - 1 1 - 1 =9 2 2 3 3 4 +L+ n n +11-+ 1 1 =1-9 n +1n.10分9n +9 19.解(1)因为在VABC中 BC =1, AC = 3, ABC = 60AC = BC + AB- 2BC ABcosABC,所以 AB- AB-2 = 0,解得 AB = 2,.2分故 AC+ BC = AB,故 BC AC .又平面 ACFM 平面 ABC且交于 AC,故 BC 平面o,故2222222ACFM,又 AM 平面 ACFM,故 BC AM .5分(2)由(1)结合锥体的体积公式可
3、得VB- ACFM = ( MF + AC) CF BC = 3,故1 13 241 13,解得 MF = 3 .7分)MF + 3 =4 2(3 2又CB CA,CB CF,CF CA,故以C为坐标原点建立如图直角坐系. 3 ,0,1uuuur)3则 A(3,0,0,B 0,1,0, )() M,故 AB = - 3,1,0,AM = - 2 ,0,1,设平面MAB(2v- 3x + y = 0n AB = 0的一个法向量为n = (x, y, z),则v uuuuvn AM = 0y = 2 3,故,即- 23 x + z =0,令 x = 2有z = 3()n = 2,2 3, 3,.9
4、分又平面 FCB的一个法向量为m =(1,0,0),设平面 MAB与平面 FCB所成的锐二面角为q,则r rmn22 1919cosq = r r =2+(2 3) + 3.12分m n22220 F (-1,0),F (1,0)为焦点的椭圆,且2a = 2 2,c =1,21(1)由椭圆的定义可知:M的轨迹为以12所以222,b = a - c = 2 -1 =1所以 C的方程为 x + y22=1.4分2y = k(x+1),k 0(2)设直线 l为:则联立 x + y2=1得:(1+ 2k- 2 = 0,)x2+ 4k2x + 2k22224k2x x = 2k2-2,A(x , y )
5、,B( x , y ),则设x1 + x = -2,1 211221+ 2k21+ 2k22ky1 + y = k(x + x )+ 2k =,2121+ 2k 22(2)(2 2 1=+k2),.6分24 2k -24k则 AB = 1+k2-1+2k21+2k21+2k22k2kAB中点坐标为-,,1+2k21+2k2k1 2k2,.所以 AB的垂直平分线为 y -1+2k= - x +k1+2k.8分22k2令 y = 0得: x = -,21+2kk2k 21+ k 2所以 P-,0, F P =1-=,1+ 2k21+2k211+ 2k22 2(1+ k2)AB =2 21+ 2k2.12分F1P1+ k21+ 2k2