1、3.2.1 函数的最大(小)值(第二课时)教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;教学重点:函数的最大(小)值及其几何意义教学难点:利用函数的单调性求函数的最大(小)值 教学过程:一、引入课题画出下列函数的图象,并根据图象解答下列问题: 说出y=f(x)的单调区间,以及在各单调区间上的单调性; 指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(2)(3) (4)二、新课教学(一)函数最大(小)值定义1最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x0I,使得
2、f(x0) = M那么,称M是函数y=f(x)的最大值(Maximum Value)思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义(学生活动)注意: 函数最大(小)首先应该是某一个函数值,即存在x0I,使得f(x0) = M; 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的xI,都有f(x)M(f(x)M)2利用函数单调性的判断函数的最大(小)值的方法 利用二次函数的性质(配方法)求函数的最大(小)值 利用图象求函数的最大(小)值 利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间a,b上单调递增,在区间b,c上单调递减则
3、函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间a,b上单调递减,在区间b,c上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1 旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:房价(元)住房率(%)16055140651207510085欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系设为旅馆一天的客房总收入,为与房价160相比降低的房价,因此当房价为元时,住房率为,于是得=150由于1,可知090因此问题转化
4、为:当090时,求的最大值的问题将的两边同除以一个常数0.75,得1=25017600由于二次函数1在=25时取得最大值,可知也在=25时取得最大值,此时房价定位应是16025=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元)所以该客房定价应为135元(当然为了便于管理,定价140元也是比较合理的)例2求函数在区间2,6上的最大值和最小值解:在与内都为减函数,题中要求在2,6内的最大值与最小值,则当取得最大值,当取得最小值25例3:如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?解:矩形的一边长为x,则另一边的长度为则,则矩形的面积为,即一、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 作 差 变 形 定 号 下结论二、作业布置ABCD提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?