1、2019年小升初数学平面图形知识点2019年小升初数学平面图形知识点平面图形1、长方形(1)特征数学平面图形知识点:对边相等,4个角都是直角的四边形。有两条对称轴。(2)计算公式c=2(a+b)s=ab2、正方形(1)特征:四条边都相等,四个角都是直角的四边形。有4条对称轴。(2)计算公式c=4as=a23、三角形(1)特征由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。(2)计算公式s=ah/2(3)分类按角分锐角三角形:三个角都是锐角。直角三角形:有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。钝角三角形:有一个角是钝角。按边分不等边三角形:三条边
2、长度不相等。等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。4、平行四边形(1)特征两组对边分别平行的四边形。相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易变形。(2)计算公式s=ah5、梯形(1)特征只有一组对边平行的四边形。中位线等于上下底和的一半。等腰梯形有一条对称轴。(2)公式s=(a+b)h/2=mh6、圆(1)圆的认识平面上的一种曲线图形。圆中心的一点叫做圆心。一般用字母o表示。半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。在同一个圆里,有无数条半径,每条半径的长度
3、都相等。通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。同一个圆里有无数条直径,所有的直径都相等。同一个圆里,直径等于两个半径的长度,即d=2r。圆的大小由半径决定。圆有无数条对称轴。(2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。(3)圆的周长围成圆的曲线的长叫做圆的周长。把圆的周长和直径的比值叫做圆周率。用字母表示。(4)圆的面积圆所占平面的大小叫做圆的面积。(5)计算公式d=2rr=d/2c=dc=2rs=r27、扇形(1)扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
4、圆上AB两点之间的部分叫做弧,读作弧AB。顶点在圆心的角叫做圆心角。在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。扇形有一条对称轴。(2)计算公式s=nr2/3608、环形(1)特征由两个半径不相等的同心圆相减而成,有无数条对称轴。(2)计算公式s=(R2-r2)9、轴对称图形(1)特征如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。正方形有4条对称轴,长方形有2条对称轴。等腰三角形有2条对称轴,等边三角形有3条对称轴。等腰梯形有一条对称轴,圆有无数条对称轴。一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,
5、四门博士)春秋谷梁传疏曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。韩非子也有云:“今有不才之子师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。菱形有4条对称轴,扇形有一条对称轴。要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。第 5 页