1、A基础达标1化简:sin()Asin xBcos xCsin x Dcos x解析:选Bsinsinsincos x.2已知cos 31m,则sin 239tan 149的值是()A. BC D解析:选Bsin 239tan 149sin(18059)tan(18031)sin 59(tan 31)sin(9031)(tan 31)cos 31(tan 31)sin 31.3在ABC中,已知sin ,则cos 的值为()A. BC. D解析:选C.因为ABC,所以,所以cos cossin .4若sin(180)cos(90)a,则cos(270)2sin(360)的值是()A BC. D.解
2、析:选B由sin(180)cos(90)a,得sin sin a,即sin ,所以cos(270)2sin(360)sin 2sin 3sin .5已知f(sin x)cos 3x,则f(cos 10)的值为()A BC D.解析:选A.f(cos 10)f(sin 80)cos 240cos(18060)cos 60.6已知cos,则sin_解析:sinsincos.答案:7化简sin()cossincos()_解析:原式sin sin cos cos 1.答案:18已知cos2sin,则_解析:因为cos2sin,所以sin 2cos .原式.答案:9化简:.解:因为sincos ,cos
3、sin ,cos()cos ,sin()sin ,cossin ,sin()sin ,所以原式sin sin 0.10设f(),求f的值解:因为f(),所以f.B能力提升1已知cos(75),则sin(15)cos(105)的值是()A. BC D解析:选D.sin(15)cos(105)sin(75)90cos180(75)sin90(75)cos(75)cos(75)cos(75)2cos(75).2sin21sin22sin23sin288sin289sin290的值为_解析:因为sin21sin289sin21cos211,sin22sin288sin22cos221,sin2xsin
4、2(90x)sin2xcos2x1(1x44,xN),所以原式(sin21sin289)(sin22sin288)(sin244sin246)sin290sin24545.答案:3求证:对任意的整数k,1.证明:左边.当k为偶数时,设k2n(nZ),则左边1.当k为奇数时,设k2n1(nZ),同理可得左边1.综上,可知原等式成立4(选做题)已知sin(3)cos,cos()cos(),且0,0,求sin 和cos 的值解:由已知,得sin sin ,cos cos ,由22,得sin23cos22,即sin23(1sin2)2,所以sin2.又0,则sin .将sin 代入,得sin .又0,故cos .