1、32 简单的三角恒等变换(导学案)课前预习学案一、预习目标:回顾复习两角和与差的正弦、余弦和正切公式及二倍角公式,预习简单的三角恒等变换。二、预习内容:1、回顾复习以下公式并填空:Cos(+)= Cos(-)=sin(+)= sin(-)=tan(+)= tan(-)= sin2= tan2= cos2=2、阅看课本P139-141例1、2、3。三、提出疑惑:同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标:会用已学公式进行三角函数式的化简、求值和证明,会推导半角公式,积化和差、和差化积公式(公式不要求记忆),进一步提高运用转化、换元、方程等数学思想解决
2、问题的能力。 学习重点:以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。 学习难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。二、学习过程:探究一:半角公式的推导(例1) 请同学们阅看例1,思考以下问题,并进行小组讨论。 1、2与有什么关系?与/2有什么关系?进一步体会二倍角公式和半角公式的应用。 2、半角公式中的符号如何确定? 3、二倍角公式和半角公式有什么联系? 4、代数变换与三角变换有什么不同?探究二:半角公式的推导(例2) 请同学们阅看例2
3、,思考以下问题,并进行小组讨论。 1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系? 2、在例2证明过程中,如果不用(1)的结果,如何证明(2)? 3、在例2证明过程中,体现了什么数学思想方法?探究三:三角函数式的变换(例3) 请同学们阅看例1,思考以下问题,并进行小组讨论。1、例3的过程中应用了哪些公式? 2、如何将形如y=asinx+bcosx的函数转化为形如y=Asin(x+)的函数?并求y=asinx+bcosx的周期,最大值和最小值 三、反思、总结、归纳: sin/2= cos/2= tan/2= sincos= cossin= coscos= sins
4、in= sin+sin= sin-sin= cos+cos= cos-cos=四、当堂检测: 课本p143 习题3.2 A组1、(3)(7)2、(1)B组2 课后练习与提高一、选择题:1已知cos(+)cos()=,则cos2sin2的值为( )ABCD2在ABC中,若sinAsinB=cos2,则ABC是( )A等边三角形B等腰三角形C不等边三角形D直角三角形3sin+sin=(coscos),且(0,),(0,),则等于( )ABCD二、填空题4sin20cos70+sin10sin50=_5已知=,且cos+cos=,则cos(+)等于_三、解答题6已知f(x)=+,x(0,)(1)将f(x)表示成cosx的多项式;(2)求f(x)的最小值w.w.w.k.s.5.u.c.o.m