1、人教版七年级数学上册整式的加减2教案设计教案学科数学新授课整式的加减(2)教学目标1、能运用运算律探究去括号法则,并且利用去括号法则将整式化简2、经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力教学重点去括号法则,准确应用法则将整式化简教学难点括号前面是“”号去括号时,括号内各项变号容易产生错误教学过程一、新授 利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢? 现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时
2、,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米 冻土地段与非冻土地段相差100t-120(t-0.5)千米 上面的式子、都带有括号,它们应如何化简? 思路点拨:教师引导,启发学生类比数的运算,利用分配律学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得: 100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60 100t-120(t-0.5)=100t-120t-120(-0.5)=-20t+60 我们知道,化简带有括号的整式,首先应先去括号上面两式去括号部分
3、变形分别为:+120(t-0.5)=+120t-60 -120(t-0.5)=-120+60 比较、两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示: 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反 特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3) 利用分配律,可以将式子中的括号去掉,得: +(x-3)=x-3 (括号没了,括号内的每一项都没有变号) -(x-3)=-x+3 (括号没了,括号内的每一项都改
4、变了符号) 去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项 二、范例学习 例1化简下列各式: (1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b) 思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号 解答过程按课本,可由学生口述,教师板书 例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流
5、速度是a千米/时 (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米? 教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路 思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和解答过程按课本 去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号 三、巩固练习 1课本第68页练习1、2题 2计算:5xy2-3xy2-(4xy2-2x2y)+2x2y-xy2 5xy2 思路点拨:一般地,先去小括号,再去中括号 四、课堂小结 去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“”号时,括号连同括号前面的“”号去掉,括号里的各项都改变符号去括号“”变“”不变,要变全都变当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项 五、作业布置 1课本第71页习题22第2、3、5、8题 2选用课时作业设计个人修改教后反思: