1、32.3 直棱柱和圆锥的侧面展开图一、情境导入,初步认识 如图是一个长方体,大家数一下它有几个面,几条棱,上、下面与侧面有什么位置关系,竖着的棱与上、下面有何位置关系?二、思考探究,获取新知 观察下列图中的立体图形,它们的形状有什么共同特点?1.直棱柱的有关概念在几何中,我们把上述这样的立体图形称为直棱柱,其中“棱”是指两个面的公共边.它具有以下特征:(1) 有两个面互相平行,称它们为 ;(2) 其余各个面都为矩形,称它们为 ;(3) 侧棱(指两个侧面的公共边)垂直于底面. 根据底面图形的边数,我们分别称它们为直三棱柱、直四棱柱、直五棱柱、直六棱柱等.2.直棱柱的侧面展开图 要求同学们把准备好
2、的长方体纸盒的侧面沿一条侧棱剪开,试试看能否展开成一个平面,它是什么图形? 结论:将直棱柱的侧面沿着一条侧棱剪开,可以展开成平面图形,称为直棱柱的侧面展开图. 直棱柱的侧面展开图是一个 ,这个 的长是直棱柱的底面周长,宽是直棱柱的侧棱长.3.圆锥的侧面展开图(1)圆锥的有关概念:如右图是一个圆锥,它是由一个底面和一个侧面围成的图形,它的底面是一个圆,连接顶点和底面圆心的线段叫做圆锥的 ,圆锥顶点与底面圆周上上任意一点的连线都叫做圆锥的 , 的长度都相等.(2)把圆锥的侧面沿它的一条母线展开,它的侧面可以展开成一个平面图形,称为圆锥的侧面展开图. 圆锥的侧面展开图是一个 ,这个 的半径是圆锥的母
3、线长,弧长是圆锥底面圆的周长.三、运用新知,深化理解1.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( ) A.1 B.34 C.12 D.132.若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是_度.3.如果圆锥的母线长为5cm,底面半径为3cm,那么圆锥的全面积为_.4.如图,已知圆锥的母线AB=6,底面半径r=2,求圆锥的侧面展开图的扇形圆心角四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师点评:(1)直棱柱的侧面展开图是矩形,其面积=直棱柱的底面周长直棱柱的高.(2)圆锥侧面积公式:S侧= (r为底面圆半径,l为母线长)(3)圆锥全面积公式:S全= (r为底面圆半径,l为母线长)