1、第24章 解直角三角形考点一、直角三角形的性质1. 直角三角形的两个锐角互余可表示如下:C=90A+B=902. 在直角三角形中,30角所对的直角边等于斜边的一半3. 直角三角形斜边上的中线等于斜边的一半4. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即5. 摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项6. 常用关系式由三角形面积公式可得:ABCD=ACBC考点二、直角三角形的判定1. 有一个角是直角的三角形是直角三角形2. 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形3. 勾股定理的
2、逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形考点三、锐角三角函数的概念1. 如图,在ABC中,C=90 锐角A的对边与斜边的比叫做A的正弦,记为sinA,即锐角A的邻边与斜边的比叫做A的余弦,记为cosA,即锐角A的对边与邻边的比叫做A的正切,记为tanA,即锐角A的邻边与对边的比叫做A的余切,记为cotA,即2. 锐角三角函数的概念锐角A的正弦、余弦、正切、余切都叫做A的锐角三角函数3. 各锐角三角函数之间的关系(1)互余关系:sinA=cos(90A),cosA=sin(90A)tanA=cot(90A),cotA=tan(90A)(2)平方关系:(3)倒数关系:t
3、anAcotA=1(4)弦切关系:tanA=;cotA=4. 锐角三角函数的增减性:当角度在090之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)5. 一些特殊角的三角函数值三角函数030456090sin01cos10tan01不存在cot不存在10考点四、解直角三角形1. 解直角三角形的概念:在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形2. 解直角三角形的理论依据在RtABC中,C=90,A,B,C所对的边分别为a,b,c(1)三边之间的关系:(勾股定理)(2)锐角之间的关系:A+B=90(3)边角之间的关系: