收藏 分享(赏)

2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc

上传人:高**** 文档编号:1000218 上传时间:2024-06-03 格式:DOC 页数:8 大小:429KB
下载 相关 举报
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第1页
第1页 / 共8页
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第2页
第2页 / 共8页
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第3页
第3页 / 共8页
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第4页
第4页 / 共8页
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第5页
第5页 / 共8页
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第6页
第6页 / 共8页
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第7页
第7页 / 共8页
2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题检测(十一) 空间几何体的三视图、表面积及体积一、选择题1如图所示是一个物体的三视图,则此三视图所描述物体的直观图是()解析:选D先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确2设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为()A100B.C. D.解析:选D因为切面圆的半径r4,球心到切面的距离d3,所以球的半径R5,故球的体积VR353,即该西瓜的体积为.3(2019届高三开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A4 B2C. D解析:选B由题意知该几何体的直观图如

2、图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为,由tan ,得,故底面面积为22,则该几何体的体积为32.4九章算术中,将底面是直角三角形的直三棱柱称为“堑堵”已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A2 B42C44 D46解析:选C由三视图知,该几何体是直三棱柱ABCA1B1C1,其直观图如图所示,其中ABAA12,BCAC,C90,侧面为三个矩形,故该“堑堵”的侧面积S(22)244.5(2018惠州二调)如图,某几何体的三视图是三个全等的等腰直角三角形,且直角边长都等于1,则该几何体的外接球的体积为()A.B.C3 D.解析:选B

3、还原几何体为如图所示的三棱锥ABCD,将其放入棱长为1的正方体中,如图所示,则三棱锥ABCD外接球的半径R,该几何体的外接球的体积VR3,故选B.6已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. cm3 B. cm3C2 cm3 D4 cm3解析:选B由三视图可知,该几何体为底面是正方形,且边长为2 cm,高为2 cm的四棱锥,如图,故V222(cm3)7如图,已知EAB所在的平面与矩形ABCD所在的平面互相垂直,EAEB3,AD2,AEB60,则多面体EABCD的外接球的表面积为()A. B8C16 D64解析:选C由题知EAB为等边三角形,设

4、球心为O,O在平面ABCD的射影为矩形ABCD的中心,O在平面ABE上的射影为EAB的重心G,又由平面EAB平面ABCD,则OGA为直角三角形,OG1,AG,所以R24,所以多面体EABCD的外接球的表面积为4R216.8(2018昆明摸底)古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为()A63 B72C79 D99解析:选A由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为3253363.9(2019届高三武汉调

5、研)一个几何体的三视图如图所示,则它的表面积为()A28 B242C204 D202解析:选B根据该几何体的三视图作出其直观图如图所示,可知该几何体是一个底面是梯形的四棱柱根据三视图给出的数据,可得该几何体中梯形的上底长为2,下底长为3,高为2,所以该几何体的表面积S (23)222223222242,故选B.10.如图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1和的直角三角形,俯视图是半径为1的半圆,则该几何体的内接三棱锥的体积的最大值为()A. B.C. D.解析:选B由三视图可知该几何体为半个圆锥,圆锥的母线长l2,底面半径r1,高h.由半圆锥的直观图

6、可得,当三棱锥的底面是斜边,为半圆直径,高为半径的等腰直角三角形,棱锥的高为半圆锥的高时,其内接三棱锥的体积达到最大值,最大体积为V21,故选B.11(2019届高三贵阳摸底考试)某实心几何体是用棱长为1 cm的正方体无缝粘合而成的,其三视图如图所示,则该几何体的表面积为()A50 cm2 B61 cm2C84 cm2 D86 cm2解析:选D根据题意可知该几何体由3个长方体(最下面长方体的长、宽、高分别为5 cm,5 cm, 1 cm;中间长方体的长、宽、高分别为3 cm,3 cm,1 cm;最上面长方体的长、宽、高分别为1 cm,1 cm,1 cm)叠合而成,长、宽、高分别为5 cm,5

7、cm,1 cm的长方体的表面积为2(555151)23570(cm2);长、宽、高分别为3 cm,3 cm,1 cm的长方体的表面积为2(333131)21530(cm2);长、宽、高分别为1 cm,1 cm,1 cm的长方体的表面积为2(111111)236(cm2)由于几何体的叠加而减少的面积为2(33)2(11)21020(cm2),所以所求表面积为703062086(cm2)12在棱长为3的正方体ABCDA1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥MPBC的体积为()A1 B.C. D与M点的位置有关解析:选B,点P到平面BCC1B1的距离是D1到平面B

8、CC1B1距离的,即为1.M为线段B1C1上的点,SMBC33,VMPBCVPMBC1.13(2018洛阳尖子生第一次联考)某几何体的三视图如图所示,则该几何体的体积为()A2 B1C. D.解析:选C由题图可知该几何体是一个四棱锥,如图所示,其中PD平面ABCD,底面ABCD是一个对角线长为2的正方形,底面积S 222,高h1,则该几何体的体积VSh,故选C.14(2018武汉调研)某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.解析:选D由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA1D1BB1C1和一个三棱锥CBC1D后剩下的几何体,

9、即如图所示的四棱锥DABC1D1,四棱锥DABC1D1的底面积为S四边形ABC1D122,高h,其体积VS四边形ABC1D1h2.15(2019届高三安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为()A1 B.C. D.解析:选C法一:该几何体的直观图为如图所示的四棱锥SABCD,SD平面ABCD,且SD1,四边形ABCD是平行四边形,且ABDC1,连接BD,由题意知BDDC,BDAB,且BD1,所以S四边形ABCD1,所以VSABCDS四边形ABCDSD.法二:由三视图易知该几何体为锥体,所以VSh,其中S指的是锥体的底面积,即俯视图中四边形的面积,易知S1,h指的是锥体

10、的高,从正视图和侧视图易知h1,所以VSh.16(2018福州质检)已知三棱锥PABC的四个顶点都在球O的表面上,PA平面ABC,ABBC,且PA8.若平面ABC截球O所得截面的面积为9,则球O的表面积为()A10 B25C50 D100解析:选D设球O的半径为R,由平面ABC截球O所得截面的面积为9,得ABC的外接圆的半径为3.设该外接圆的圆心为D,因为ABBC,所以点D为AC的中点,所以DC3.因为PA平面ABC,易证PBBC,所以PC为球O的直径又PA8,所以ODPA4,所以ROC5,所以球O的表面积为S4R2100.二、填空题17一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四

11、棱锥的体积是_解析:由四棱锥的三视图可知,该四棱锥的直观图如图中四棱锥PABCD所示,底面ABCD为边长为1的正方形,PAD是边长为1的等边三角形,作POAD于点O,则O为AD的中点,所以四棱锥的体积为V11.答案:18.如图,在正三棱柱ABCA1B1C1中,D为棱AA1的中点若AA14,AB2,则四棱锥BACC1D的体积为_解析:取AC的中点O,连接BO(图略),则BOAC,所以BO平面ACC1D.因为AB2,所以BO.因为D为棱AA1的中点,AA14,所以AD2,所以S梯形ACC1D(24)26,所以四棱锥BACC1D的体积为62.答案:219.如图,半径为4的球O中有一内接圆柱,则圆柱的侧面积最大值是_解析:设圆柱的上底面半径为r,球的半径与上底面夹角为,则r4cos ,圆柱的高为8sin .所以圆柱的侧面积为32sin 2.当且仅当时,sin 21,圆柱的侧面积最大,所以圆柱的侧面积的最大值为32.答案:3220(2018沈阳质检)已知在正四棱锥SABCD中,SA6,那么当该棱锥的体积最大时,它的高为_解析:设正四棱锥的底面正方形的边长为a,高为h,因为在正四棱锥SABCD中,SA6,所以h2108,即a22162h2,所以正四棱锥的体积VSABCDa2h72hh3,令y72hh3,则y722h2,令y0,得0h6,令y6,所以当该棱锥的体积最大时,它的高为6.答案:6

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3