ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:429KB ,
资源ID:1000218      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1000218-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019版二轮复习数学(文)通用版:专题检测(十一) 空间几何体的三视图、表面积及体积 WORD版含解析.doc

1、专题检测(十一) 空间几何体的三视图、表面积及体积一、选择题1如图所示是一个物体的三视图,则此三视图所描述物体的直观图是()解析:选D先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确2设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为()A100B.C. D.解析:选D因为切面圆的半径r4,球心到切面的距离d3,所以球的半径R5,故球的体积VR353,即该西瓜的体积为.3(2019届高三开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A4 B2C. D解析:选B由题意知该几何体的直观图如

2、图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为,由tan ,得,故底面面积为22,则该几何体的体积为32.4九章算术中,将底面是直角三角形的直三棱柱称为“堑堵”已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为()A2 B42C44 D46解析:选C由三视图知,该几何体是直三棱柱ABCA1B1C1,其直观图如图所示,其中ABAA12,BCAC,C90,侧面为三个矩形,故该“堑堵”的侧面积S(22)244.5(2018惠州二调)如图,某几何体的三视图是三个全等的等腰直角三角形,且直角边长都等于1,则该几何体的外接球的体积为()A.B.C3 D.解析:选B

3、还原几何体为如图所示的三棱锥ABCD,将其放入棱长为1的正方体中,如图所示,则三棱锥ABCD外接球的半径R,该几何体的外接球的体积VR3,故选B.6已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A. cm3 B. cm3C2 cm3 D4 cm3解析:选B由三视图可知,该几何体为底面是正方形,且边长为2 cm,高为2 cm的四棱锥,如图,故V222(cm3)7如图,已知EAB所在的平面与矩形ABCD所在的平面互相垂直,EAEB3,AD2,AEB60,则多面体EABCD的外接球的表面积为()A. B8C16 D64解析:选C由题知EAB为等边三角形,设

4、球心为O,O在平面ABCD的射影为矩形ABCD的中心,O在平面ABE上的射影为EAB的重心G,又由平面EAB平面ABCD,则OGA为直角三角形,OG1,AG,所以R24,所以多面体EABCD的外接球的表面积为4R216.8(2018昆明摸底)古人采取“用臼舂米”的方法脱去稻谷的外壳,获得可供食用的大米,用于舂米的“臼”多用石头或木头制成一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为()A63 B72C79 D99解析:选A由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为3253363.9(2019届高三武汉调

5、研)一个几何体的三视图如图所示,则它的表面积为()A28 B242C204 D202解析:选B根据该几何体的三视图作出其直观图如图所示,可知该几何体是一个底面是梯形的四棱柱根据三视图给出的数据,可得该几何体中梯形的上底长为2,下底长为3,高为2,所以该几何体的表面积S (23)222223222242,故选B.10.如图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1和的直角三角形,俯视图是半径为1的半圆,则该几何体的内接三棱锥的体积的最大值为()A. B.C. D.解析:选B由三视图可知该几何体为半个圆锥,圆锥的母线长l2,底面半径r1,高h.由半圆锥的直观图

6、可得,当三棱锥的底面是斜边,为半圆直径,高为半径的等腰直角三角形,棱锥的高为半圆锥的高时,其内接三棱锥的体积达到最大值,最大体积为V21,故选B.11(2019届高三贵阳摸底考试)某实心几何体是用棱长为1 cm的正方体无缝粘合而成的,其三视图如图所示,则该几何体的表面积为()A50 cm2 B61 cm2C84 cm2 D86 cm2解析:选D根据题意可知该几何体由3个长方体(最下面长方体的长、宽、高分别为5 cm,5 cm, 1 cm;中间长方体的长、宽、高分别为3 cm,3 cm,1 cm;最上面长方体的长、宽、高分别为1 cm,1 cm,1 cm)叠合而成,长、宽、高分别为5 cm,5

7、cm,1 cm的长方体的表面积为2(555151)23570(cm2);长、宽、高分别为3 cm,3 cm,1 cm的长方体的表面积为2(333131)21530(cm2);长、宽、高分别为1 cm,1 cm,1 cm的长方体的表面积为2(111111)236(cm2)由于几何体的叠加而减少的面积为2(33)2(11)21020(cm2),所以所求表面积为703062086(cm2)12在棱长为3的正方体ABCDA1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥MPBC的体积为()A1 B.C. D与M点的位置有关解析:选B,点P到平面BCC1B1的距离是D1到平面B

8、CC1B1距离的,即为1.M为线段B1C1上的点,SMBC33,VMPBCVPMBC1.13(2018洛阳尖子生第一次联考)某几何体的三视图如图所示,则该几何体的体积为()A2 B1C. D.解析:选C由题图可知该几何体是一个四棱锥,如图所示,其中PD平面ABCD,底面ABCD是一个对角线长为2的正方形,底面积S 222,高h1,则该几何体的体积VSh,故选C.14(2018武汉调研)某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.解析:选D由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA1D1BB1C1和一个三棱锥CBC1D后剩下的几何体,

9、即如图所示的四棱锥DABC1D1,四棱锥DABC1D1的底面积为S四边形ABC1D122,高h,其体积VS四边形ABC1D1h2.15(2019届高三安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为()A1 B.C. D.解析:选C法一:该几何体的直观图为如图所示的四棱锥SABCD,SD平面ABCD,且SD1,四边形ABCD是平行四边形,且ABDC1,连接BD,由题意知BDDC,BDAB,且BD1,所以S四边形ABCD1,所以VSABCDS四边形ABCDSD.法二:由三视图易知该几何体为锥体,所以VSh,其中S指的是锥体的底面积,即俯视图中四边形的面积,易知S1,h指的是锥体

10、的高,从正视图和侧视图易知h1,所以VSh.16(2018福州质检)已知三棱锥PABC的四个顶点都在球O的表面上,PA平面ABC,ABBC,且PA8.若平面ABC截球O所得截面的面积为9,则球O的表面积为()A10 B25C50 D100解析:选D设球O的半径为R,由平面ABC截球O所得截面的面积为9,得ABC的外接圆的半径为3.设该外接圆的圆心为D,因为ABBC,所以点D为AC的中点,所以DC3.因为PA平面ABC,易证PBBC,所以PC为球O的直径又PA8,所以ODPA4,所以ROC5,所以球O的表面积为S4R2100.二、填空题17一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四

11、棱锥的体积是_解析:由四棱锥的三视图可知,该四棱锥的直观图如图中四棱锥PABCD所示,底面ABCD为边长为1的正方形,PAD是边长为1的等边三角形,作POAD于点O,则O为AD的中点,所以四棱锥的体积为V11.答案:18.如图,在正三棱柱ABCA1B1C1中,D为棱AA1的中点若AA14,AB2,则四棱锥BACC1D的体积为_解析:取AC的中点O,连接BO(图略),则BOAC,所以BO平面ACC1D.因为AB2,所以BO.因为D为棱AA1的中点,AA14,所以AD2,所以S梯形ACC1D(24)26,所以四棱锥BACC1D的体积为62.答案:219.如图,半径为4的球O中有一内接圆柱,则圆柱的侧面积最大值是_解析:设圆柱的上底面半径为r,球的半径与上底面夹角为,则r4cos ,圆柱的高为8sin .所以圆柱的侧面积为32sin 2.当且仅当时,sin 21,圆柱的侧面积最大,所以圆柱的侧面积的最大值为32.答案:3220(2018沈阳质检)已知在正四棱锥SABCD中,SA6,那么当该棱锥的体积最大时,它的高为_解析:设正四棱锥的底面正方形的边长为a,高为h,因为在正四棱锥SABCD中,SA6,所以h2108,即a22162h2,所以正四棱锥的体积VSABCDa2h72hh3,令y72hh3,则y722h2,令y0,得0h6,令y6,所以当该棱锥的体积最大时,它的高为6.答案:6

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3