1、第1讲 数列的概念1.命题点1/2023山东菏泽鄄城一中三模已知数列an的前n项和为Sn,且满足Sn4an3,则Sn(C)A.4(25)n1B.4(23)n1C.3(43)n1D.4(3n1)解析当n1时,S14a13,得a1S11,当n2时,Sn4(SnSn1)3,化简得Sn43Sn11,即Sn343(Sn13)(n2),又S134,所以Sn3是首项为4,公比为43的等比数列,所以Sn34(43)n1,所以Sn4(43)n133(43)n1,故选C.2.命题点2角度1/2023山东济南历城二中模拟数列an中,a12,an1ann1.(1)求数列an的通项公式;(2)设bn1an,数列bn的前
2、n项和为Tn,证明:Tn2.解析(1)因为an1ann1,即an1ann1,所以当n2时,a2a12,a3a23,anan1n,将以上各式相加,得ana123n(n1)(n+2)2,则ann2n+22(n2),当n1时也符合上式,故ann2n+22.(2)由题意知bn1an2n2n+22n2n2n(n+1)2(1n1n+1).所以Tnb1b2bn2(11212131n1n+1)2(11n1)2,问题得证.3.命题点3角度2/2023四川达州三诊已知数列an满足a12a222an2nn(nN*),bn(an1)n24n,若数列bn为递增数列,则的取值范围是(A)A.(38,)B.(12,)C.38,)D.12,)解析由a12a222an2nn(nN*)可得a12a222an12n1n1(n2),两式相减可得an2n1(n2),则an2n(n2),当n1时,由a121可得a12,满足上式,故an2n(nN*),所以bn(2n1)n24n.因为数列bn为递增数列,即nN*,bn1bn0,则(2n11)(n1)24(n1)(2n1)n24n2n2n30,整理得2n32n,令cn2n32n,则cn1cn2n12n+12n32n52n2n+1(nN*),当n2时,cn1cn,当n3时,cn1cn,即当n3时,2n32n取得最大值38,从而得38,所以的取值范围为(38,).故选A.