1、人教版八年级数学上册第十三章轴对称重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列标志图形属于轴对称图形的是()ABCD2、观察下列作图痕迹,所作CD为ABC的边AB上的中线是()ABCD3、
2、如图已知,把一张长方形纸片ABCD沿EF折叠后D与BC的交点为G,D、C分别在M、N的位置上,有下列结论:EF平分MED;2 = 23;: 1 +23=180,其中一定正确的个数是()A1B2C3D44、如图,已知钝角ABC,依下列步骤尺规作图,并保留作图痕迹步骤1以C为圆心,CA为半径画弧;步骤2以B为圆心,BA为半径画弧,交弧于点D;步骤3连接AD,交BC延长线于点H下列叙述正确的是()ABH垂直平分线段ADBAC平分BADCSABC=BCAHDAB=AD5、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D806、如
3、图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD7、下列图形中,是轴对称图形的是()ABCD8、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD9、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等10、下列三角形中,等腰三角形的个数是()A4个B3个C2个D1个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,ADBC,垂足为
4、点D,CE是边AB上的中线,如果CD=BE,B=40,那么BCE=_度2、已知,点P为内一点,点A为OM上一点,点B为ON上一点,当的周长取最小值时,的度数为_3、如图,BD垂直平分线段AC,AEBC,垂足为E,交BD于P点,AE7cm,AP4cm,则P点到直线AB的距离是_4、如图,ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且D+E=180,若BD=6,则CE的长为_5、如图,屋顶钢架外框是等腰三角形,其中,立柱,且顶角,则的大小为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,过的中点作,垂足分别为点、(1)求证:;(2)若,求的度数2、在学习
5、矩形的过程中,小明遇到了一个问题:在矩形中,是边上的一点,试说明的面积与矩形的面积之间的关系他的思路是:首先过点作的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹)在和中,又,_,_又_同理可得_3、如图,是边长为2的等边三角形,是顶角为120的等腰三角形,以点为顶点作,点、分别在、上(1)如图,当时,则的周长为_;(2)如图,求证:4、已知,ABC三条边的长分别为(1)若,当ABC为等腰三角形,求ABC的周长(2)化简:5、(1)如图1,已知:在ABC中,AB=AC=10,
6、BD平分ABC,CD平分ACB,过点D作EFBC,分别交AB、AC于E、F两点,则图中共有_个等腰三角形;EF与BE、CF之间的数量关系是_,AEF的周长是_;(2)如图2,若将(1)中“ABC中,AB=AC=10”该为“若ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有_个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出AEF的周长;(3)已知:如图3,D在ABC外,ABAC,且BD平分ABC,CD平分ABC的外角ACG,过点D作DEBC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明-参考答案-一、单选题1
7、、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解【详解】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合2、B【解析】【分析】根据题意,CD为ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,点D即为线段AB的中点,连接CD即可判断【详解】解:作AB边的垂直平分线,交AB于点D,连接CD,点D即为线段AB的中点,CD为ABC的边AB上的中线故选:B【考点】本题主要考查三角形一边的中线的作法;作
8、该边的中垂线,找出该边的中点是解题关键3、C【解析】【分析】根据折叠的性质即可判断;根据平行线的性质和折叠的性质可得MEF3,再根据三角形外角的性质即可判断;由ADBC可得1+2180,然后结合的结论即可判断,进一步即可判断,进而可得答案【详解】解:由折叠的性质可得DEFMEF,即EF平分MED,故正确;ADBC,DEF3,DEFMEF,3MEF,23+MEF23,故正确;ADBC,1+2180,即1+23180,故正确;1+390,故错误综上,正确的结论是,共3个故选:C【考点】本题考查了平行线的性质、折叠的性质、角平分线的定义以及三角形的外角性质等知识,属于常考题型,熟练掌握基本知识是解题
9、关键4、A【解析】【详解】解:A如图连接CD、BD,CA=CD,BA=BD,点C、点B在线段AD的垂直平分线上,直线BC是线段AD的垂直平分线,故A正确,符合题意;B CA不一定平分BDA, 故B错误,不符合题意;C应该是SABC=BCAH,故C错误,不符合题意;D根据条件AB不一定等于AD, 故D错误,不符合题意故选A5、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】
10、本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键6、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质7、C【解析】【分析】依据轴对称图形的定义逐项分析即可得出C选项正确【详解】解:因为选项A、B、D中的图形都不能通过沿某条直线折叠直线两旁的部分能达到完全重合,所以它们不符合轴对称图形的定义和要求,因此选项A、B、D中的图形都不是轴对称图形,而C选项中的图形沿上下边中点的连线折叠后,折痕的左右两边能完全重
11、合,因此符合轴对称图形的定义和要求,因此C选项中的图形是轴对称图形,故选:C【考点】本题主要考查了轴对称图形的定义,学生需要掌握轴对称图形的定义内容,理解轴对称图形的特征,方能解决问题找对图形,同时也考查了学生对图形的感知力和空间想象的能力8、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键9、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,
12、能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.10、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有
13、两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90,45,45,故第四个三角形是等腰三角形;故答案为:B【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键二、填空题1、20【解析】【分析】连接ED,再加上ADBC,利用直角三角形斜边上的中线等于斜边的一半,很容易可以推出ECD为等腰三角形,根据等腰三角形的性质:等边对等角,以及外角性质即可求出BCE的度数.【详解】如图,连接ED,ADBC,ABD是直角三角形,C
14、E是边AB上的中线,ED= AB=BE,EDB=B=40,又CD=BE,ED= CD,DEC=DCE,EDB是DEC的外角,EDB=DEC+DCE=2DCE=40,DCE=EDB=20,DCE即BCE,BCE=20.【考点】本题考查的是直角三角形的性质,等腰三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键2、80【解析】【分析】如图,分别作P关于OM、ON的对称点,然后连接两个对称点即可得到A、B两点,由此即可得到PAB的周长取最小值时的情况,并且求出APB度数【详解】解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点,PAB即为所求
15、的三角形,根据对称性知道:APO=AP1O,BPO=BP2O,还根据对称性知道:P1OP2=2MON,OP1=OP2,而MON=50,P1OP2=100,AP1O=BP2O=40,APB=240=80故答案为803、3cm【解析】【分析】由已知条件,根据垂直平分线的性质得出ABBC,可得到ABDDBC,再利用角平分线上的点到角两边的距离相等得到答案【详解】解:过点P作PMAB与点M,BD垂直平分线段AC,ABCB,ABDDBC,即BD为角平分线,AE7cm,AP4cm,AEAP3cm,又PMAB,PECB,PMPE3(cm)故答案为:3cm【考点】本题综合考查了线段垂直平分线的性质及角平分线的
16、性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.4、6【解析】【分析】在AD上截取AF=AE,连接BF,易得ABFACE,根据全等三角形的性质可得BFA=E,CE=BF,则有D=DFB,然后根据等腰三角形的性质可求解【详解】解:在AD上截取AF=AE,连接BF,如图所示:AB=AC,FAB=EAC,BF=EC,BFA=E,D+E=180,BFA+DFB=180,DFB=D,BF=BD, BD=6,5、30#30度【解析】【分析】先由等边对等角得到,再根据三角形的内角和进行求解即可【详解】,故答案为:30【考点
17、】本题考查了等腰三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键三、解答题1、(1)证明见解析;(2)=80【解析】【分析】(1)利用已知条件和等腰三角形的性质证明,根据全等三角形的性质即可证明;(2)根据三角形内角和定理得B=50,所以C=50,在ABC中利用三角形内角和定理即可求解【详解】解:(1)证明:点D为BC的中点,BD=CD,DEB=DFC=90在BDE和CDF中,(2)B=180-(BDE+BED)=50,C=50,在ABC中,=180-(B+C)=80,故=80【考点】本题考查等腰三角形的性质、全等三角形的判定与性质和三角形内角和定理,熟练掌握等腰三角形的性质并灵活
18、应用是解题的关键2、【解析】【分析】过点作的垂线,垂足为,分别利用AAS证得,利用全等三角形的面积相等即可求解【详解】证明:用直尺和圆规,过点作的垂线,垂足为(只保留作图迹)如图所示,在和中,又,又同理可得故答案为:、【考点】本题考查了全等三角形的判定和性质,掌握全等三角形的面积相等是解题的关键3、(1)4;(2)见解析【解析】【分析】(1)首先证明BDMCDN,进而得出DMN是等边三角形,BDM=CDN=30,NC=BM=DM=MN,即可解决问题;(2)延长至点,使得,连接,首先证明,再证明,得出,进而得出结果即可【详解】解:(1)是等边三角形,是等边三角形,则,是顶角的等腰三角形,在和中,
19、是等边三角形,的周长(2)如图,延长至点,使得,连接,是等边三角形,是顶角的等腰三角形,在和中,在和中,又,【考点】本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质,掌握全等三角形的性质与判定,等边三角形及等腰三角形的性质是解题的关键4、(1)ABC的周长为10;(2)【解析】【分析】(1)利用非负数的性质求出a与b的值,即可确定出三角形周长;(2)根据三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可【详解】解:(1),a-2=0,b-4=0,a=2,b=4,ABC为等腰三角形,当2为腰时,则三边为2,2,4,
20、而2+24,能组成三角形,ABC的周长为2+4+4=10;(2)ABC三条边的长分别为a、b、c,即,【考点】本题主要考查了等腰三角形的性质,三角形的三边关系,以及绝对值的计算,第(2)问的关键是先根据三角形三边的关系来判定绝对值内式子的正负5、(1)5;BE+CF=EF;20; (2)2;BE+CF=EF,证明见解析;AEF的周长=18;(3)BE-CF=EF,理由见解析.【解析】【详解】试题分析:(1)根据角平分线的定义可得EBD=CBD,FCD=BCD,再根据两直线平行,内错角相等可得EDB=CBD,FDC=BCD,然后求出EBD=EDB,FDC=BCD,再根据等角对等边可得BE=DE,
21、CF=DF,然后解答即可;(2)根据角平分线的定义可得EBD=CBD,FCD=BCD,再根据两直线平行,内错角相等可得EDB=CBD,FDC=BCD,然后求出EBD=EDB,FDC=BCD,再根据等角对等边可得BE=DE,CF=DF,然后解答即可;(3)由(2)知BE=ED,CF=DF,然后利用等量代换即可证明BE、CF、EF有怎样的数量关系试题解析:解:(1)BE+CF=EF理由如下:AB=AC,ABC=ACBBD平分ABC,CD平分ACB,EBD=CBD,FCD=BCD,DBC=DCB,DB=DCEFBC,AEF=ABC,AFE=ACB,EDB=CBD,FDC=BCD,EBD=EDB,FD
22、C=BCD,BE=DE,CF=DF,AE=AF,等腰三角形有ABC,AEF,DEB,DFC,BDC共5个,BE+CF=DE+DF=EF,即BE+CF=EF,AEF的周长=AE+EF+AF=AE+BE+AF+FC=AB+AC=20故答案为5;BE+CF=EF;20;(2)BE+CF=EFBD平分ABC,CD平分ACB,EBD=CBD,FCD=BCDEFBC,EDB=CBD,FDC=BCD,EBD=EDB,FDC=BCD,BE=DE,CF=DF,等腰三角形有BDE,CFD,BE+CF=DE+DF=EF,即BE+CF=EFAEF的周长=AE+EF+AF=AE+ED+DF+AF=AE+EB+CF+AF=AB+AC=8+10=18此时有两个等腰三角形,EFBECF,CAEF18(3)BECF=EF由(1)知BE=EDEFBC,EDC=DCG=ACD,CF=DF又EDDF=EF,BECF=EF点睛:本题主要考查的是等腰三角形的性质和判断,熟练掌握等腰三角形的判定定理是解题的关键