1、京改版八年级数学上册第十二章三角形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,若,则下列结论中不一定成立的是()ABCD2、如图,已知在四边形中,平分,则四边形的面积是()A24B30C
2、36D423、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、34、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定5、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里6、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或67、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交
3、叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加()个螺栓A1B2C3D48、如图,在中,以各边为斜边分别向外作等腰、等腰、等腰,将等腰和等腰按如图方式叠放到等腰中,已知,则长为()A2BC6D89、如图,若,则的度数为()A80B35C70D3010、自新冠肺炎疫情发生以来,全国人民共同抗疫下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,中,点,分别在,上,与交于点,若,则的面积_2、如图,若ABCA1B1C1,且A110,B40,则C1_3、将两张三角形纸片如图摆放,量
4、得1+2+3+4=220,则5=_4、如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置)测得的相关数据为:米,则_米5、如图,在等边三角形ABC中,点D是边BC的中点,则BAD=_三、解答题(5小题,每小题10分,共计50分)1、已知:如图,是的角平分线,于点 ,于点,求证:是的中垂线 2、如图,中,是边上一点,且,若求的长3、如图,已知ABC,ACAB,C45请用尺规作图法,在AC边上求作一点P,使PBC45(保留作图痕迹不写作法)4、已知:如图,相交于点O,求证:(1);(2)5、细心观察下图,认真分析各式,然后解答问题,;,;,(1)直接写出:_(2)请用含
5、有(是正整数)的等式表示上述变化规律:_=_,_;(3)求出的值-参考答案-一、单选题1、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质2、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D
6、作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键3、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.4、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,a3,
7、b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键5、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大6、B【解析】【分析】题目给出等腰三角形有两条边长为3和6
8、,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答7、A【解析】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A【考点】本题考查了三角形的稳定性的问题
9、,掌握三角形的稳定性是解题的关键8、D【解析】【分析】设ADDBa,AFCFb,BECEc,由勾股定理可求a2+b2c2,由 ,可求b4,即可求解【详解】解:设ADDBa,AFCFb,BECEc,ABa,ACb,BCc,BAC90,AB2+AC2BC2,2a2+2b22c2,a2+b2c2,将等腰RtADB和等腰RtAFC按如图方式叠放到等腰RtBEC,BGGHa,(a+c)(ca)16,c2a232,b232,b4,ACb8,故选:D【考点】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键9、D【解析】【分析】根据全等三角形的性质即可求出E【详解】解:ABCADE,C=30,
10、E=C=30,故选:D【考点】本题考查了全等三角形的性质,掌握全等三角形的对应角相等是解题的关键10、D【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可【详解】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意故选:D【考点】本题考查了轴对称图形,熟练掌握轴对称图形的定义是解题的关键二、填空题1、7.5【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解【详解】如下图所示,连接, ,设
11、, ,由,可得, ,解得 , 故答案为:7.5【考点】本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键2、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来3、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+
12、2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键4、48【解析】【分析】先说明ABC是等边三角形,然后根据等边三角形的性质即可解答【详解】解:BAC=180-60-60=60BAC=ABC=BCA=60ABC是等边三角形AC=BC=48米故答案为48【考点】本题考查了等边三角形的判定和性质,证得ABC是等边三角形是解答本题的关键5、30【解析】【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空【详解】AB
13、C是等边三角形, 又点D是边BC的中点, 故答案是:30【考点】考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴三、解答题1、见解析.【解析】【分析】由AD是ABC的角平分线,DEAB,DFAC,根据角平分线的性质,可得DE=DF,BED=CFD=90,继而证得RtBEDRtCFD,则可得B=C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【详解】解:是的角平分线,在和中,是的角平分线,是的中垂线.【考点】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质注意
14、掌握三线合一性质的应用.2、2【解析】【分析】过点作于点,则,结合可得出,进而可得出,在中,利用勾股定理可求出的长,即,结合可求出的长【详解】解:过点作于点,如图所示,在中,即,又,【考点】本题考查了勾股定理、等腰三角形的性质以及三角形内角和定理,在中,利用勾股定理求出的长是解题的关键3、详见解析【解析】【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使PBC45即可【详解】解: 作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B为圆心,以CD长为半径画弧,交BC于F,(3)以点F为圆心,以DE长为半径画弧,交前弧于点M,(3)连接BM,并延长B
15、M与AC交于点P,则点P即为所求如图,点P即为所求【考点】本题考查了作图基本作图解决本题的关键是掌握基本作图方法4、(1)见详解;(2)见详解【解析】【分析】(1)根据AAS,即可证明;(2)根据全等三角形的性质得OB=OC,进而即可得到结论【详解】证明:(1)在与中,(AAS);(2),OB=OC,【考点】本题主要考查全等三角形的判定和性质定理以及等腰三角形的性质,掌握AAS判定三角形全等,是解题的关键5、 (1)(2)(3)【解析】【分析】(1)由给出的数据写出的长即可; (2)由(1)和S1、S2、S3Sn,找出规律即可得出结果; (3)首先求出再求和即可(1)解:; 故答案为:;(2) ,;,;,归纳总结可得: 故答案为:(3), 【考点】本题主要考查勾股定理的理解,实数的运算规律探究,掌握“从具体到一般的探究方法”是解本题的关键