1、八年级数学上册第十一章实数和二次根式专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在实数:3.14159,1.010 010 001,中,无理数有()A1个B2个C3个D4个2、在四个实数,0,
2、中,最小的实数是()AB0CD3、已知,a介于两个连续自然数之间,则下列结论正确的是()ABCD4、下列说法中正确的有()个. 负数没有平方根,但负数有立方根的平方根是,的立方根是如果 ,那么x2算术平方根等于立方根的数只有1A1B2C3D45、若x为实数,在的“”中添上一种运算符号(在,中选择)后,其运算的结果是有理数,则x不可能的是()ABCD6、下列说法中正确的是()A0.09的平方根是0.3BC0的立方根是0D1的立方根是7、已知 , , ,则下列大小关系正确的是()AabcBcbaCbacDacb8、实数、在数轴上的位置如图所示,化简的结果是( )AB0CD9、如图,数轴上的点A,B
3、,O,C,D分别表示数-2,-1,0,1,2,则表示数的点P应落在A线段AB上B线段BO上C线段OC上D线段CD上10、定义a*b=ab+a+b,若3*x=27,则x的值是( )A3B4C6D9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知为实数,规定运算:,按上述方法计算:当时,的值等于_2、已知,当分别取1,2,3,2020时,所对应值的总和是_3、已知数a、b、c在数粒上的位置如图所示,化简的结果是_4、一个正数a的两个平方根是和,则的立方根为_5、若,则_三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料解答问题:新定义:对非负数x“四舍五入”
4、到个位的值记为x,即:当n为非负整数时,如果nxn+,则xn;反之,当n为非负整数时,如果xn,则nxn+例如:0.10.490,1.512.482,33,4.55.255,试解决下列问题:(1)+2.4(为圆周率);如果x12,则数x的取值范围为;(2)求出满足xx1的x的取值范围2、计算:(1)(2)3、将下列数按要求分类,并将答案填入相应的括号内:,-0.25,206,0,21%,2.010010001正分数集合负有理数集合无理数集合4、计算(1)(2)5、求下列各式的值:(1);(2)-参考答案-一、单选题1、B【解析】【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有
5、理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:,在实数:3.14159,1.010010001,中,无理数有1.010010001,共2个故选:B【考点】本题主要考查了无理数的定义,掌握无理数的定义是解题的关键,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数2、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数
6、绝对值大的反而小3、C【解析】【分析】先估算出的范围,即可得出答案【详解】解:,在3和4之间,即故选:C【考点】本题考查了估算无理数的大小能估算出的范围是解题的关键4、A【解析】【分析】根据平方根、立方根、乘方的定义以及性质逐一进行分析判断即可【详解】 负数没有平方根,但负数有立方根,正确;的平方根是,的立方根是,故错误;任何实数的平方都不可能为负数,故错误;算术平方根等于立方根的数有0、1,故错误,所以正确的有1个,故选A【考点】本题考查了平方根、立方根,熟练掌握平方根及立方根的定义是解题的关键5、C【解析】【分析】根据题意填上运算符计算即可【详解】A.,结果为有理数;B. ,结果为有理数;
7、C.无论填上任何运算符结果都不为有理数;D.,结果为有理数;故选C【考点】本题考查实数的运算,关键在于牢记运算法则6、C【解析】【分析】根据平方根,算术平方根和立方根的定义分别判断即可.【详解】解:A、0.09的平方根是0.3,故选项错误;B、,故选项错误;C、0的立方根是0,故选项正确;D、1的立方根是1,故选项错误;故选:C.【考点】本题考查了平方根,算术平方根和立方根,熟练掌握平方根、算术平方根和立方根的定义是解题的关键7、A【解析】【分析】将a,b,c变形后,根据分母大的反而小比较大小即可【详解】解:,又,故选:A.【考点】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关
8、键8、A【解析】【分析】根据实数a和b在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案【详解】解:由数轴可知-2a-1,1b2,a+10,b-10,a-b0,=-2故选A.【考点】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断9、B【解析】【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案【详解】由被开方数越大算术平方根越大,得23,由不等式的性质得:-12-0.故选B.【考点】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数
9、的大小.10、C【解析】【分析】根据运算规则转化为一元一次方程,然后求解即可【详解】解:根据运算规则可知:3*x=27可化为3x+3+x=27, 移项可得:4x=24, 即x=6故选C【考点】本题考查解一元一次方程的解法;解一元一次方程常见的思路有通分,移项,左右同乘除等二、填空题1、【解析】【分析】将,代入进行计算,可知数列3个为一次循环,按此规律即可进行求解【详解】解:由题意可知,时,其规律是3个为一次循环,20223=674,故答案为:【考点】本题考查了实数的运算,规律型:数字变化类,把代入进行计算,找到规律是解题的关键2、【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代
10、入,然后求和即可得【详解】当时,当时,则所求的总和为故答案为:【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键3、0【解析】【分析】首先根据数轴可以得到ca0b,然后则根据绝对值的性质,以及算术平方根的性质即可化简【详解】解:根据数轴可以得到:ca0b,则c-b0,a+c0,则原式=-a+(a+c)+(b-c)-b=-a+a+c+b-c-b=0故答案是:0【考点】本题考查了二次根式的性质、整式的加减、以及绝对值的性质,解答此题,要弄清4、2【解析】【分析】根据一个正数的平方根互为相反数,将和相加等于0,列出方程,解出b,再将b代入任意一个平方根中,进行
11、平方运算求出这个正数a,将算出后,求立方根即可【详解】和是正数a的平方根,解得 ,将b代入,正数 ,的立方根为:,故填:2【考点】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数5、【解析】【分析】根据实数的性质即可求解【详解】,m0,m=5,故答案为:5【考点】此题主要考查实数的性质,解题的关键是熟知实数的运算性质三、解答题1、(1)6,2.5x3.5;(2)x,4,【解析】【分析】(1)利用对非负实数x“四舍五入”到个位的值记为x,进而得出+2.4的值;利用对非负实数x“四舍五入”到个位的值记为x,进而得出x的取值范围;(2)利用xx1,设xk,k
12、为整数,得出关于k的不等关系求出即可【详解】(1)由题意可得:+2.46;故答案为:6,x12,1.5x12.5,2.5x3.5;故答案为:2.5x3.5;(2)x0,x1为整数,设xk,k为整数,则xk,kk1,k1kk1+,k0,k,k3,4,5,6,7,则x,4,【考点】此题主要考查了新定义以及一元一次不等式组的应用,根据题意正确理解x的意义是解题关键2、 (1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟
13、练掌握绝对值、算术平方根和立方根的运算3、见解析【解析】【分析】根据实数的分类,由分数,负有理数,无理数的定义可得答案【详解】解:正分数集合:,21%,;负有理数集合:-0.25,;无理数集合:,2.010010001,【考点】本题考查了有理数以及无理数,利用实数的分类是解题关键4、 (1)9(2)11-【解析】【分析】(1)直接利用二次根式的乘法、乘方、零指数幂分别化简得出答案;(2)直接利用乘法公式以及二次根式的除法运算法则化简得出答案(1)解:原式4+4+19(2)解:原式187 11【考点】此题主要考查了二次根式的混合运算、乘法公式、零指数幂以及乘方的意义,正确化简二次根式是解题关键5、(1);(2)0【解析】【分析】(1)根据立方根定义先将原式中的和计算出来,然后再相加即可得到结果;(2)根据立方根定义先将原式中的、和计算出来,然后再加减即可得到结果【详解】(1);(2)【考点】本题考查立方根,熟练掌握立方根的性质是解决本题的关键