收藏 分享(赏)

湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx

上传人:高**** 文档编号:936263 上传时间:2024-06-01 格式:DOCX 页数:13 大小:430.09KB
下载 相关 举报
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第1页
第1页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第2页
第2页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第3页
第3页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第4页
第4页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第5页
第5页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第6页
第6页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第7页
第7页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第8页
第8页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第9页
第9页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第10页
第10页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第11页
第11页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第12页
第12页 / 共13页
湖南省长沙一中2020-2021学年高一上学期第一次阶段性检测数学试卷 WORD版含答案.docx_第13页
第13页 / 共13页
亲,该文档总共13页,全部预览完了,如果喜欢就下载吧!
资源描述

1、长沙一中2020-2021学年度高一第一学期第一次阶段性检测数 学时间:120分钟 分值:150分一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集,则( )A.B.C.D.2.函数的定义域为( )A.B.C.D.3.下列函数为偶函数,且在单调递增的是( )A.B.C.D.4.命题“,”的否定是( )A.,B.,C.,D.,5.若,则、的大小关系为( )A.B.C.D.由的取值确定6.函数在单调递减,且为奇函数,若,则满足的的取值范围为( )A.B.C.D.7.已知,则( )A.B.C.D.8.已知,都是正数,且,则的最小值

2、为( )A.B.C.D.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.)9.已知集合,为自然数集,则下列表示正确的是( )A.B.C.D.10.下列函数的最小值为的有( )A.B.C.D.11.以下选项中,是,的一个必要条件的为( )A.B.C.D.12.设表示不超过的最大整数,如:,又称为取整函数,在现实生活中有着广泛的应用,诸如停车收费,出租车收费等均按“取整函数”进行计费,以下关于“取整函数”的描述,正确的是( )A.,B.,若,则C.,D.不等式的解集为三、填空题(本大题共4小题,每小题

3、5分,共20分.)13.已知函数,则_.14.已知集合,若,则实数的所有可能的取值组成的集合为_.15.用表示、三个数中的最小值,则的最大值为_.16.高二某班共有人,每名学生要从物理、化学、生物、历史、地理、政治这六门课程中选择门进行学习.已知选择物理、化学、生物的学生各有至少人,这三门学科均不选的有人.这三门课程均选的有人,三门中任选两门课程的均至少有人.三门中只选物理与只选化学均至少有人,那么该班选择物理与化学但未选生物的学生至多有_人.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分10分)已知集合,.(1)若,求实数的值;(2)是的_

4、条件,若实数的值存在,求出的取值范围;若不存在,说明理由.(请在充分不必要,必要不充分,充要;中任选一个,补充到空白处)18.(本小题满分12分)函数.(1)若的定义域为,求的取值范围;(2)当时,求的值域.19.(本小题满分12分)已知不等式的解集为.(1)求,的值,并求不等式的解集;(2)解关于的不等式(,且)20.(本小题满分12分)已知、为正数.(1)若,证明:;(2)若,证明:.21.(本小题满分12分)用清水洗一堆衣服上残留的污渍,用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,现作如下假定:用单位的水清洗次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数.(1)()试

5、解释与的实际意义;()写出函数应该满足的条件或具有的性质;(写出至少条,不需要证明)(2)现有单位量的水,可以清洗一次,也可以把水平均分成份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由.22.(本小题满分12分)已知.(1)若,使成立,求实数的取值范围;(2)若,在上有最小值,求实数的取值范围.长沙一中2020-2021学年度高一第一学期第一次阶段性检测数学参考答案一、选择题123456789101112DADCABABABADCDBCD二、填空题13.14.15.16.三、解答题17.【解析】(1)对即对,即,则,即经检验满足题意.(2)选,此时必无解.即不存在实数,使得题意

6、成立选,选,此时无解,即不存在实数,使得题意成立18.【解析】(1)即,对恒成立1当,满足;2当时,综上:时,函数的定义域为(2)时,令故的值域为19.【解析】(1)由题意知且.则即的解集为(2)1当,不等式2当,不等式3当时,则或综上所述:1)当时,不等式的解集为2)当时,不等式的解集为3)当时,不等式的解集为20.【解析】(1),变形得,当且仅当,即时,等号成立(2).即当且仅当时,等号成立21.【解析】(1)(),表示没有用水清洗时,衣服上的污渍不变,表示用个单位的水清洗时,可清除衣服上残留的污渍的()函数的定义域为,值为,在上单调递减(2)设清洗前衣服上的污渍为,用单位量的水清洗次后,残留的污渍为则如果用单位的水清洗次,则残留的污渍为然后再用单位的水清洗次后,残留的污渍为.由于,所以,的符号由决定当时,此时,把单位的水平均分成份后,清洗两次,残留的污渍较少当时,此时,两种清洗方法效果相同当时,此时,用单位的水清洗一次,残留的污渍较少22.【解析】(1),易知在上递增,使()当,满足题意()当,即综上上述,当时,满足题意(2)1当,即时,在,递增,在递减当有最小值,则需2当,即时对,此时对,在递减,在递增.存在最小值.综上,当时,在上有最小值.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3