1、高考压轴大题突破练 (一)直线与圆锥曲线(1)1(2022陕西)已知椭圆E:1(ab0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x2)2(y1)2的一条直径,若椭圆E经过A,B两点,求椭圆E的方程2已知椭圆C的中心为坐标原点O,一个长轴端点为(0,2),短轴端点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A,B,且2.(1)求椭圆方程;(2)求m的取值范围3已知抛物线C:y24x,点M(m,0)在x轴的正半轴上,过点M的直线l与抛物线C相交于A,B两点,O为坐标原点(1)若m1
2、,且直线l的斜率为1,求以AB为直径的圆的方程;(2)是否存在定点M,使得不论直线l绕点M如何转动,恒为定值?4(2022课标全国)在直角坐标系xOy中,曲线C:y与直线l:ykxa(a0)交于M,N两点,(1)当k0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有OPMOPN?说明理由答案精析高考压轴大题突破练(一)直线与圆锥曲线(1)1解(1)过点(c,0),(0,b)的直线方程为bxcybc0,则原点O到该直线的距离d,由dc,得a2b2,解得离心率.(2)方法一由(1)知,椭圆E的方程为x24y24b2.依题意,圆心M(2,1)是线段AB的中点,且|A
3、B|.易知,AB与x轴不垂直,设其方程为yk(x2)1,代入得(14k2)x28k(2k1)x4(2k1)24b20,设A(x1,y1),B(x2,y2),则x1x2,x1x2,由x1x24,得4,解得k,从而x1x282b2.于是|AB| |x1x2|,由|AB|,得,解得b23,故椭圆E的方程为1.方法二由(1)知,椭圆E的方程为x24y24b2,依题意,点A,B关于圆心M(2,1)对称,且|AB|,设A(x1,y1),B(x2,y2),则x4y4b2,x4y4b2,两式相减并结合x1x24,y1y22,得4(x1x2)8(y1y2)0,易知AB与x轴不垂直,则x1x2,所以AB的斜率kA
4、B,因此直线AB的方程为y(x2)1,代入得x24x82b20,所以x1x24,x1x282b2,于是|AB| |x1x2|.由|AB|,得,解得b23,故椭圆E的方程为1.2解(1)由题意知椭圆的焦点在y轴上,设椭圆方程为1(ab0),由题意知a2,bc,又a2b2c2,则b,所以椭圆方程为1.(2)设A(x1,y1),B(x2,y2),由题意知,直线l的斜率存在,设其方程为ykxm,与椭圆方程联立即则(2k2)x22mkxm240,(2mk)24(2k2)(m24)0,由根与系数的关系知又2,即有(x1,my1)2(x2,y2m)x12x2,22,整理得(9m24)k282m2,又9m24
5、0时不成立,k20,得m20.m的取值范围为.3解(1)当m1时,M(1,0),此时点M为抛物线C的焦点直线l的方程为yx1,设A(x1,y1),B(x2,y2),联立消去y,得x26x10,所以x1x26,y1y2x1x224,所以圆心坐标为(3,2)又|AB|x1x228,所以圆的半径为4,所以圆的方程为(x3)2(y2)216.(2)由题意可设直线l的方程为xkym,则直线l的方程与抛物线C:y24x联立,消去x得,y24ky4m0,则y1y24m,y1y24k,若对任意kR恒为定值,则m2,此时.所以存在定点M(2,0),满足题意4解(1)由题设可得M(2,a),N(2,a),或M(2,a),N(2,a)又y,故y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即xya0.y在x2处的导数值为,C在点(2,a)处的切线方程为ya(x2),即xya0.故所求切线方程为xya0和xya0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将ykxa代入C的方程得x24kx4a0.故x1x24k,x1x24a.从而k1k2.当ba时,有k1k20,则直线PM的倾斜角与直线PN的倾斜角互补,故OPMOPN,所以点P(0,a)符合题意