1、4.1.2用二分法求方程的近似解一、教学目标1、知识与技能:(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;(2)体会程序化解决问题的思想,为算法的学习作准备。2、过程与方法:(1)让学生在求解方程近似解的实例中感知二分发思想;(2)让学生归纳整理本节所学的知识。3、情感、态度与价值观:体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;培养学生认真、耐心、严谨的数学品质。二、 教学重点、难点重点:用二分法求解函数f(x)的零点近似值的步骤。难点:为何由a b 便可判断零点的近似值为a(或b)?三、 学法与教法1、想想。2、教法:探究交流,讲练
2、结合。四、教学过程(一)、创设情景,揭示课题提出问题:(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 x2x6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?(2)通过前面一节课的学习,函数f(x)=x2x6在区间内有零点;进一步的问题是,如何找到这个零点呢?(二)、研讨新知 一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。 取区间(2,3)的中点2.5,用计算器算得f(2.5)0.084,因为f(2.5)*f(3)0,所以零点在
3、区间(2.5,3)内;再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)0.512,因为f(2.75)*f(2.5)0,所以零点在(2.5,2.75)内;由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于2.53906252.53125=0.00781250.01,所以我们可以将x=2.54作为函数f(x)=x2x6零点的近似
4、值,也就是方程x2x6=0近似值。这种求零点近似值的方法叫做二分法。1师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。 2为什么由a b 便可判断零点的近似值为a(或b)?先由学生思考几分钟,然后作如下说明:设函数零点为x0,则ax0b,则:0x0aba,abx0b0;由于a b ,所以x0 a ba,x0 b ab,即a或b 作为零点x0的近似值都达到了给定的精确度。(三)、巩固深化,发展思维1、学生在老师引导启发下完成下面的例题例2借助计算器用二分法求方程2x3x7的近似解(精确到0.01)问题:原方程的近似解和哪个函数的零点是等价的?师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解(四)、归纳整理,整体认识在师生的互动中,让学生了解或体会下列问题:1、本节我们学过哪些知识内容?2、你认为学习“二分法”有什么意义?3、在本节课的学习过程中,还有哪些不明白的地方?(五)、布置作业: P102习题3.1A组第四题,第五题。五、教后反思:w.w.w.k.s.5.u.c.o.m