1、八年级数学上册第十四章整式的乘法与因式分解专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列运算正确的是()Aa2a3a6Ba2a2a4C(ab)2a2b2D(a)3a2a52、下列各式变形中,
2、是因式分解的是()ABCD3、下列运算中正确的是()Aa5 + a5 = a10B(ab)3 = a3b3C(x4)3 = x7Dx2 + y2 =(x+y)24、计算的结果是()AaBCD5、已知则的大小关系是()ABCD6、如下列试题,嘉淇的得分是()姓名:嘉淇得分:将下列各式分解因式(每题20分,共计100分);A40分B60分C80分D100分7、下列各多项式中,能运用公式法分解因式的有()A4个B5个C6个D7个8、不论x、y为什么实数,代数式的值()A可为任何实数B不小于7C不小于2D可能为负数9、()A(-2)99B299C2D-210、计算()201932020 的结果为 ()
3、A1B3CD2020第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:(a+b)2(a+b)_2、某班黑板是一个长方形,它的面积为6a2-9ab+3a,已知这个长方形的长为3a,则宽为_3、分解因式_4、对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=10若(x+1)(x2)=6,则x的值为_5、_三、解答题(5小题,每小题10分,共计50分)1、(1)分解因式:(2)解不等式组并在数轴上表示它的解集2、.3、因式分解:(1);(2);(3)4、甲、乙两人各持一张分别写有整式、的卡片已知整式,下面是甲、乙二人的对话:甲:我的卡片上写着整式
4、,加上整式后得到最简整式;乙:我用最简整式加上整式后得到整式根据以上信息,解决下列问题:(1)求整式和;(2)请判断整式和整式的大小,并说明理由5、先化简,再求值:(a+)(a)+a(a6),其中a-参考答案-一、单选题1、D【解析】【分析】根据完全平方公式、同底数幂的乘法,即可解答【详解】A. 根据同底数幂的乘法计算得:,选项错误;B. 根据合并同类项计算得:,选项错误;C. 根据完全平方公式计算得:,选项错误;D. 根据同底数幂的乘法计算得:,选项正确;故选:D【考点】本题考查了完全平方公式、同底数幂的乘法,解决本题的关键是熟记完全平方公式2、D【解析】【分析】根据因式分解是把一个多项式转
5、化成几个整式乘积的形式,可得答案【详解】解:A、等式的右边不是整式的积的形式,故A错误;B、等式右边分母含有字母不是因式分解,故B错误;C、等式的右边不是整式的积的形式,故C错误;D、是因式分解,故D正确;故选D【考点】本题考查了因式分解的定义,因式分解是把一个多项式转化成几个整式乘积的形式3、B【解析】【分析】根据合并同类项,单项式的除法,幂的乘方,完全平方公式进行计算,再选择即可【详解】解:A.a5+a5=2 a5,选项错误;B.(ab)3 = a3b3,故选项正确;C.(x4)3 = x12,故选项错误;D.(x+y)2= x2 +2xy+ y2,故选项正确故选B【考点】本题考查了同类项
6、的定义,同底数幂的乘法,积的乘方的性质,要求学生对于这些知识比较熟悉才能很好解决这类题目4、B【解析】【分析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】原式=a5.故选B.【考点】本题考查了同底数幂的乘法运算,熟练掌握运算法则是解答本题的关键.5、A【解析】【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:故选A.【考点】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.6、A【解析】【分析】根据提公因式法及公式法分解即可【详解】,故该项正确;,故该项错误;,故该项错误;,故该项错误;,故该项正确;正确的有:与共2道题,得40分,故选:A
7、【考点】此题考查分解因式,将多项式写成整式乘积的形式,叫做将多项式分解因式,分解因式的方法:提公因式法、公式法,根据每道题的特点选择恰当的分解方法是解题的关键7、B【解析】【分析】利用完全平方公式及平方差公式的特征判断即可【详解】解:(1)可用平方差公式分解为;(2)不能用平方差公式分解;(3)可用平方差公式分解为;(4)可用平方差公式分解为4am;(5)可用平方差公式分解为;(6)可用完全平方公式分解为 ;(7)不能用完全平方公式分解;能运用公式法分解因式的有5个,故选B【考点】此题考查了因式分解运用公式法,熟练掌握完全平方公式及平方差公式是解本题的关键8、C【解析】【分析】要把代数式进行拆
8、分重组凑完全平方式,来判断其值的范围具体如下:【详解】(x22x1)(y24y4)2(x1)2(y2)22,(x1)20,(y2)20,(x1)2(y2)222,2故选:C【考点】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围要求掌握完全平方公式,并会熟练运用9、B【解析】【分析】利用乘方的定义变形为,合并即可得到答案【详解】故选:B【考点】本题主要考查了积的乘方、整式的加减,解题的关键是掌握积的乘方及整式加减运算法则10、B【解析】【分析】直接利用积的乘方运算法则将原式变形求出答案【详解】解:3故选:B【考点】此题主要考查了积的乘方运算,正确利用积的
9、乘方法则将原式变形是解题关键二、填空题1、#【解析】【分析】直接找出公因式(a+b),进而分解因式得出答案【详解】解:(a+b)2(a+b)(a+b)(a+b1)故答案为:(a+b)(a+b1)【考点】此题主要考查因式分解,解题的关键是熟知提公因式法的运用2、2a-3b+1【解析】【分析】根据长方形的面积公式可知:长宽=面积,则宽=面积长,列式计算即可完成.【详解】由题意可得,长方形的宽为:(6a2-9ab+3a)3a=2a-3b+1故答案为2a-3b+1【考点】本题考查多项式除以单项式,熟练掌握长方形面积公式以及多项式除以单项式的运算法则是解题关键.3、【解析】【分析】先提取公因式m,再对余
10、下的多项式利用完全平方公式继续分解【详解】解:m3-4m2+4m=m(m2-4m+4)=m(m-2)2故答案为:m(m-2)2【考点】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止4、1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2(x+1)(x2)=6,整理得,3x+3=6,解得,x=1,故答案为1【考点】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键5、【解析】【分析】由平方差公式进行计算
11、,即可得到答案【详解】解:;故答案为:【考点】本题考查了平方差公式,解题的关键是熟练掌握平方差公式进行计算三、解答题1、(1)(x+y)2(x-y)2;(2)0x2【解析】【分析】(1)观察该式特点,先变形为(x2+y2)2-4x2y2=(x2+y2)2-(2xy)2再根据公式法a2-b2=(a+b)(a-b),得(x2+y2)2-(2xy)2=(x+y)2(x-y)2(2)根据不等式的性质,解不等式,解得:x0解不等式,解得:x2那么,该不等式组的解集为0x2【详解】解:(1)(x2+y2)2-4x2y2=(x2+y2)2-(2xy)2=(x2+y2+2xy)(x2+y2-2xy)=(x+y
12、)2(x-y)2(2)解不等式,得3x2x解得:x0解不等式,得:-4x-8解得:x2该不等式组的解集为0x2该不等式组的解集在数轴上表示如下:【考点】本题主要考查运用公式法进行因式分解、解一元一次不等式组以及在数轴上表示不等式的解集,熟练掌握公式法进行因式分解以及解一元一次不等式组是解决本题的关键2、【解析】【分析】先计算乘方,然后计算括号,再计算除法即可.【详解】解:原式【考点】本题主要考查了整式的运算,涉及幂的乘方,多项式的乘除运算,熟练掌握运算法则是解题的关键.3、(1);(2);(3)【解析】【分析】(1)先变号,再运用提公因式法分解计算;(2)直接运用提公因式法分解计算即可;(3)
13、先变号,再运用提公因式法分解计算【详解】解:(1);(2);(3)【考点】本题考查提公因式法分解因式,正确找出题中的公因式是解题的关键4、(1);(2);答案见解析【解析】【分析】(1)依题意可得,代入各式即可求解;(2)化简,根据配方法的应用即可求解【详解】解:(1),(2)理由:,【考点】此题主要考查整式的加减及配方法的应用,解题的关键是熟知完全平方公式的应用5、2a26a3,16【解析】【分析】原式利用平方差公式,以及单项式乘以多项式法则计算,合并得到最简结果,把a的值代入计算即可求出值【详解】解:原式a23+a26a2a26a3,当a时,原式46316【考点】本题主要考查整式化简求值,准确计算是解题的关键