1、数列求和建议用时:45分钟一、选择题1数列an的通项公式为an,若该数列的前k项之和等于9,则k()A80B81C79D82Ban,Sna1a2a3an()()()().由题意知Sk9,解得k81,故选B.2若数列an的通项公式是an(1)n(3n2),则它的前100项之和S100()A150B120C120D150AS100a1a2a3a99a100147(295)298503150.故选A.3已知数列an的通项公式是an,其前n项和Sn,则项数n()A13B10 C9D6D由an1得Snnnn1.令n1,即n.解得n6,故选D.4.的值为()A.B.C.D.C因为,所以.5Sn等于()A.
2、B.C.D.B由Sn,得Sn,得,Sn,所以Sn.二、填空题6已知数列:1,2,3,则其前n项和关于n的表达式为_1设所求的前n项和为Sn,则Sn(123n)1.7有穷数列1,12,124,1242n1所有项的和为_2n1n2an1242n12n1,则Sna1a2an(2222n)nn2n1n2.8化简Snn(n1)2(n2)2222n22n1的结果是_2n1n2因为Snn(n1)2(n2)2222n22n1,2Snn2(n1)22(n2)2322n12n,所以得,Snn(222232n)n22n1,所以Sn2n1n2.三、解答题9(2019泰安模拟)已知数列an的前n项和Sn3n28n,bn
3、是等差数列,且anbnbn1.(1)求数列bn的通项公式;(2)令cn,求数列cn的前n项和Tn.解(1)由题意知,当n2时,anSnSn16n5.当n1时,a1S111,所以an6n5(nN*)设数列bn的公差为d.由即可解得b14,d3.所以bn3n1.(2)由(1)知cn3(n1)2n1.又Tnc1c2cn,得Tn3222323(n1)2n1,2Tn3223324(n1)2n2,两式作差,得Tn322223242n1(n1)2n233n2n2.所以Tn3n2n2.10(2017全国卷)设数列an满足a13a2(2n1)an2n.(1)求an的通项公式;(2)求数列的前n项和解(1)因为a
4、13a2(2n1)an2n,故当n2时,a13a2(2n3)an12(n1),两式相减得(2n1)an2,所以an(n2)又由题设可得a12,满足上式,所以an的通项公式为an.(2)记的前n项和为Sn.由(1)知,则Sn.1在数列an中,a12,a22,an2an1(1)n,nN*,则S60的值为()A990B1 000C1 100D99An为奇数时,an2an0,an2;n为偶数时,an2an2,ann.故S60230(2460)990.2设数列an的前n项和为Sn,若a14,an12Sn4,则S10()A2(3101)B2(3101)C2(391)D4(391)Ca14,an12Sn4,
5、a22a144,当n2时,an2Sn14,得an1an2an,an13an(n2),an从第2项起是公比为3的等比数列,S10a1(a2a3a10)42(391),故选C.3已知Sn为数列an的前n项和,对nN*都有Sn1an,若bnlog2an,则_.对nN*都有Sn1an,当n1时,a11a1,解得a1.当n2时,anSnSn11an(1an1),化为anan1.数列an是等比数列,公比为,首项为.an.bnlog2ann.则1.4等差数列an的前n项和为Sn,数列bn是等比数列,满足a13,b11,b2S210,a52b2a3.(1)求数列an和bn的通项公式;(2)令cn设数列cn的前
6、n项和为Tn,求T2n.解(1)设数列an的公差为d,数列bn的公比为q,由得解得an32(n1)2n1,bn2n1.(2)由a13,an2n1,得Snn(n2),则cn即cnT2n(c1c3c2n1)(c2c4c2n)(22322n1)1(4n1)1已知数列an满足a11,an1an2n(nN*),则S2 020()A22 0201B321 0103C321 0101D321 0092Ba11,a22,又2.2.a1,a3,a5,成等比数列;a2,a4,a6,成等比数列,S2 020a1a2a3a4a5a6a2 019a2 020(a1a3a5a2 019)(a2a4a6a2 020)321 0103.故选B.2已知各项均不相等的等差数列an的前四项和S414,且a1,a3,a7成等比数列(1)求数列an的通项公式;(2)设Tn为数列的前n项和,若Tnan1对一切nN*恒成立,求实数的最大值解(1)设数列an的公差为d(d0),由已知得,解得或(舍去),所以ann1.(2)由(1)知,所以Tn.又Tnan1恒成立,所以28,而2816,当且仅当n2时等号成立所以16,即实数的最大值为16.