1、专题5.5 三角函数真题训练1(2021年全国高考乙卷数学(文)试题)函数的最小正周期和最大值分别是()A和B和2C和D和2【答案】C【分析】利用辅助角公式化简,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,所以的最小正周期为,最大值为.故选:C2(2022年新高考浙江数学高考真题)为了得到函数的图象,只要把函数图象上所有的点()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度【答案】D【分析】根据三角函数图象的变换法则即可求出【详解】因为,所以把函数图象上的所有点向右平移个单位长度即可得到函数的图象故选:D.3(2022年新高考天津数学高
2、考真题)已知,关于该函数有下列四个说法:的最小正周期为;在上单调递增;当时,的取值范围为;的图象可由的图象向左平移个单位长度得到以上四个说法中,正确的个数为()ABCD【答案】A【分析】根据三角函数的图象与性质,以及变换法则即可判断各说法的真假【详解】因为,所以的最小正周期为,不正确;令,而在上递增,所以在上单调递增,正确;因为,所以,不正确;由于,所以的图象可由的图象向右平移个单位长度得到,不正确故选:A4(2023年高考全国甲卷数学(理)真题)“”是“”的()A充分条件但不是必要条件B必要条件但不是充分条件C充要条件D既不是充分条件也不是必要条件【答案】B【分析】根据充分条件、必要条件的概
3、念及同角三角函数的基本关系得解.【详解】当时,例如但,即推不出;当时,即能推出.综上可知,是成立的必要不充分条件.故选:B5(2021年全国高考乙卷数学(文)试题)()ABCD【答案】D【分析】由题意结合诱导公式可得,再由二倍角公式即可得解.【详解】由题意,.故选:D.6(2021年全国高考乙卷数学(理)试题)把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则()ABCD【答案】B【分析】解法一:从函数的图象出发,按照已知的变换顺序,逐次变换,得到,即得,再利用换元思想求得的解析表达式;解法二:从函数出发,逆向实施各步变换,利用平移伸缩变换
4、法则得到的解析表达式.【详解】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,根据已知得到了函数的图象,所以,令,则,所以,所以;解法二:由已知的函数逆向变换,第一步:向左平移个单位长度,得到的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,即为的图象,所以.故选:B.7(2022年高考全国甲卷数学(文)真题)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是()ABCD【答案】C【分析】先由平移求出曲线的解析式,再结合对称性得,即可求出的最小值.【详解】由题意知:曲线为
5、,又关于轴对称,则,解得,又,故当时,的最小值为.故选:C.8(2022年新高考全国II卷数学真题)若,则()ABCD【答案】C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】方法一:直接法由已知得:,即:,即:所以故选:C方法二:特殊值排除法解法一:设=0则sin +cos =0,取,排除A, B;再取=0则sin +cos= 2sin,取,排除D;选C.方法三:三角恒等变换 所以即故选:C.9(2022年新高考浙江数学高考真题)设,则“”是“”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【分析】由三角函数的性质结合充分
6、条件、必要条件的定义即可得解.【详解】因为可得:当时,充分性成立;当时,必要性不成立;所以当,是的充分不必要条件.故选:A.10(2023年新课标全国卷数学真题)已知为锐角,则()ABCD【答案】D【分析】根据二倍角公式(或者半角公式)即可求出【详解】因为,而为锐角,解得:故选:D11(2023年新课标全国卷数学真题)已知,则()ABCD【答案】B【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.【详解】因为,而,因此,则,所以.故选:B【点睛】方法点睛:三角函数求值的类型及方法(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角
7、总有一定关系解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围12(2023年高考全国甲卷数学(文)真题)已知为函数向左平移个单位所得函数,则与的交点个数为()A1B2C3D4【答案】C【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为
8、向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,当时,;当时,;当时,;所以由图可知,与的交点个数为.故选:C.13(2023年高考全国乙卷数学(理)真题)已知函数在区间单调递增,直线和为函数的图像的两条对称轴,则()ABCD【答案】D【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入即可得到答案.【详解】因为在区间单调递增,所以,且,则,当时,取得最小值,则,则,不妨取,则,则,故选:D.14(2021年全国新高考I卷数学试题)若,则()ABCD【答案】C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化
9、处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论15(2021年全国新高考I卷数学试题)下列区间中,函数单调递增的区间是()ABCD【答案】A【分析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把
10、看作一个整体代入的相应单调区间内即可,注意要先把化为正数16(2021年全国高考甲卷数学(文)试题)若,则()ABCD【答案】A【分析】由二倍角公式可得,再结合已知可求得,利用同角三角函数的基本关系即可求解.【详解】,解得,.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出.17(2022年新高考全国I卷数学真题)记函数的最小正周期为T若,且的图象关于点中心对称,则()A1BCD3【答案】A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足,得,解得,又因为函数图象关于点对称,所以,且,所以,所
11、以,所以.故选:A18(2022年高考全国甲卷数学(理)真题)沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是AB的中点,D在上,“会圆术”给出的弧长的近似值s的计算公式:当时,()ABCD【答案】B【分析】连接,分别求出,再根据题中公式即可得出答案.【详解】解:如图,连接,因为是的中点,所以,又,所以三点共线,即,又,所以,则,故,所以.故选:B.19(2021年全国高考甲卷数学(理)试题)已知函数的部分图像如图所示,则满足条件的最小正整数x为_【答案】2【分析】先根据图象求出函数的解析式,再求出的值,然后求解三角不等式可
12、得最小正整数或验证数值可得.【详解】由图可知,即,所以;由五点法可得,即;所以.因为,;所以由可得或;因为,所以,方法一:结合图形可知,最小正整数应该满足,即,解得,令,可得,可得的最小正整数为2.方法二:结合图形可知,最小正整数应该满足,又,符合题意,可得的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解,根据特殊点求解.20(2023年高考全国乙卷数学(文)真题)若,则_【答案】【分析】根据同角三角关系求,进而可得结果.【详解】因为,则,又因为,则,且,解得或(舍去),所以.故答案为:.21(2022年高考全国乙卷数学(理)真题)记函数
13、的最小正周期为T,若,为的零点,则的最小值为_【答案】【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而得解;【详解】解: 因为,(,)所以最小正周期,因为,又,所以,即,又为的零点,所以,解得,因为,所以当时;故答案为:22(2023年新课标全国卷数学真题)已知函数在区间有且仅有3个零点,则的取值范围是_【答案】【分析】令,得有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为,所以,令,则有3个根,令,则有3个根,其中,结合余弦函数的图像性质可得,故,故答案为:.23(2023年新课标全国卷数学真题)已知函数,如图A,B是直线与曲线的两个交点,若,则_【答案】【分
14、析】设,依题可得,结合的解可得,从而得到的值,再根据以及,即可得,进而求得【详解】设,由可得,由可知,或,由图可知,即,因为,所以,即,所以,所以或,又因为,所以,故答案为:【点睛】本题主要考查根据图象求出以及函数的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键24(2021年全国高考甲卷数学(文)试题)已知函数的部分图像如图所示,则_.【答案】【分析】首先确定函数的解析式,然后求解的值即可.【详解】由题意可得:,当时,令可得:,据此有:.故答案为:.【点睛】已知f(x)Acos(x)(A0,0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数和,
15、常用如下两种方法:(1)由即可求出;确定时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令x00(或x0),即可求出.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出和,若对A,的符号或对的范围有要求,则可用诱导公式变换使其符合要求.25(2022年新高考浙江数学高考真题)若,则_,_【答案】 【分析】先通过诱导公式变形,得到的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出,接下来再求【详解】方法一:利用辅助角公式处理,即,即,令,则,即, ,则.故答案为:;.方法二:直接用同角三角函数关系式解方程,即,又,将代入得,解得,则.故答案为:;.