收藏 分享(赏)

2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt

上传人:高**** 文档编号:808516 上传时间:2024-05-31 格式:PPT 页数:30 大小:1.02MB
下载 相关 举报
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第1页
第1页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第2页
第2页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第3页
第3页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第4页
第4页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第5页
第5页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第6页
第6页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第7页
第7页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第8页
第8页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第9页
第9页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第10页
第10页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第11页
第11页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第12页
第12页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第13页
第13页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第14页
第14页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第15页
第15页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第16页
第16页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第17页
第17页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第18页
第18页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第19页
第19页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第20页
第20页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第21页
第21页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第22页
第22页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第23页
第23页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第24页
第24页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第25页
第25页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第26页
第26页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第27页
第27页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第28页
第28页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第29页
第29页 / 共30页
2012届高考数学(理)全国版统编教材学海导航高中总复习(第1轮)课件:11.1离散型随机变量的分布列.ppt_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第十一章 概率与统计第 讲 考 点搜 索随机变量、离散型与连续型随机变量的含义离散型随机变量的分布列、二项分布、分布列的基本性质高考高 考猜 想1.求离散型随机变量的分布列.2.分布列性质的应用.1.如果随机试验的结果可以用来表示,那么这样的_叫做随机变量;随机变量常用_等表示.2.对于随机变量可能取的值,如果可以按_一一列出,这样的随机变量叫做离散型随机变量;随机变量可以取某一区间内的_,这样的随机变量叫做连续型随机变量.一切值一个变量变量希腊字母、一定次序3.设离散型随机变量可能取的值为x1,x2,xi,取每一个值xi(i=1,2,)的概率P(=xi)=Pi,则称表为_,简称.x1x2x3

2、xiPP1P2P3Pi的分布列随机变量的概率分布列4.离散型随机变量的两个性质:(1)_;(2)_.5.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率_.之和Pi0,i=1,2,P1+P2+Pi+=16.若随机变量的可能取值为0,1,2,n,且取值的概率,其中k=0,1,2,n,q=1-p,其概率分布列为:则称这样的随机变量服从_.记为_,并记=_.01knPb(k;n,p)二项分布B(n,p)()kkn knPkCpq00nnCp q111nnCp q kkn knCp q 0nnnCp qk k nkCp qn1.抛掷两颗骰子,所得点数之和为,那么=4表示的随机试验结果

3、是()A.一颗是3点,一颗是1点B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解:对A、B中表示的随机试验的结果,随机变量均取值4,而D是=4代表的所有试验结果.D2.下列表中能成为随机变量的分布列的是()A.B.C.D.解:A、D不满足分布列的基本性质(2),B不满足分布列的基本性质(1),故选C.-101P0.3 0.4 0.4-101P0.3 0.4 0.3123P0.4 0.7-0.1123P0.3 0.4 0.4C3.设随机变量B(2,p),B(4,p),若P(1)=,则P(1)=.解:P(1)=1-P(1)=所以p=,所以P(1)=1-P(=0)=5965

4、8120025119C pp,13004412166511.338181C()()题型1 求随机变量的分布列1.在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽到次品数的分布列;(2)放回抽样时,抽到次品数的分布列.分析:随机变量可以取0,1,2,可以取0,1,2,3,放回抽样和不放回抽样对随机变量的取值和相应的概率都产生了变化,要具体问题具体分析.解:(1)所以的分布列为(2)所以的分布列为338107(0)15PC C,12283107(1)15C CPC,12823107(1)15C CPC,012P71571511538()0.80.2(0 1 2 3)kk

5、kPkCk,0123P038 0.8C1280.80.2C 2280.8 0.2C 338 0.2C点评:求随机变量的分布列的方法是:先根据题意,结合分类方法列出随机变量的各种情况所对应的值,然后分别求得各值对应的概率,最后用表格的形式列出.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意连续取出2件,求取出的次品数的概率分布.解:据题意,的可能取值为0,1,2.由于任意连续取出2件可认为是两次独立重复试验,所以B(2,0.05).所以B(2,0.05).所以故的分布列为0221222(0)0.950.9025;(1)0.95 0.050.0950(2)0.0520.0025.PCP

6、CPC;012P0.90250.09500.0025题型2 求随机变量的概率2.掷一枚非均匀的硬币,出现正面的概率为,出现反面的概率为,以表示首次出现正面所需要的试验次数,求取偶数的概率.解:依据题意,的可能取值为1,2,=k表示掷k次硬币,前k-1次都出现反面,第k次出现正面.由于每次出现正、反面都是相互独立的,1434所以P(=k)=()k-1 (k=1,2,).所以当取偶数时的概率为:P(=2)+P(=4)+P(=2n)+点评:若随机变量的概率与随机变量满足一定的函数关系式,如随机变量满足几何分布或二项式分布时,可直接利用关系式求得指定随机变量的概率.143432113 111314.1

7、4 44445116n(1)掷一颗正方体骰子,以表示出现的点数,分别求P(4)和P(25)的值;(2)已知随机变量B(5,),求P(=3)的值.解:(1)的可能取值为1,2,3,4,5,6,且出现每一点的概率均为.1316所以P(4)=P(=5)+P(=6)=,P(25)=P(=2)+P(=3)+P(=4)(2)P(=3)=111663113.623235111440110.33279243C题型3 求相关随机变量的分布列 3.已知随机变量的概率分布为求随机变量=sin()的分布列.解:因为sin()=12nP1221212n2-1 (n=4k-1)0 (n=2k)1 (n=4k-3)(k=1

8、,2,3,),2 所以的可能取值为-1,0,1,且3711111128(1)122215116P ;246111114(0)1222314P ;59111182(1)122215116P ;点评:若随机变量,满足一定关系式:=f(),则可由的取值情况得出的取值情况,即可以把的取值看成定义域,则为值域,即可根据的分布列,得出的分布列.所以的分布列为-101P81513215已知随机变量的分布列为分别求出随机变量的分布列.解:由于,所以对于不同的,1有对应的取值,所以1的分布列为-2-10123P11211211231241221221212,11212由于2=2,所以对于的不同取值-2,2及-1

9、,1,2分别取相同的值4与1.-1-01P11211211231241221212123222224(0)(0);12314(1)(1);121212123(4)(2);1212121(9)(3).12PPPPPPPP 故2的分布列为20149P4124123121124.已知随机变量的概率分布为则实数c的值为.解:由得所以题型4 分布列性质的应用()(0 1 2 3)1cPkkk,1011 12131cccc,11111234c,12.25c 点评:离散型随机变量的分布列都具有下面两个性质:(1)pi0,i=1,2;(2)p1+p2+=1.对于离散型随机变量在某一范围内取值的概率等于它取这个

10、范围内各个值的概率之和,即P(xk)=P(=xk)+P(=xk+1)+.设随机变量等可能取值1,2,3,4,n,如果P(4)=0.3,则n的值为.解:由条件知P(=i)=(i=1,2,n),所以P(4)=3=0.3,得n=10.1n1n101.一个随机试验应具备下列三个条件:试验可以在相同情形下重复进行;试验的所有可能结果明确可知,且不止一个;每次试验总是恰好出现这些结果中的一个,但在一次试验之前不能肯定这次试验会出现哪种结果.2.随机变量的取值与随机试验的结果是对应的,有些随机试验的结果不具有数量性质(如抛掷硬币),但可以通过适当设定加以数量化(如正面朝上为1,反面朝上为0).3.若为随机变量,f(x)为连续函数或单调函数,则f()也是随机变量.4.若一次随机试验可看做只有两种结果A和,则在n次独立重复试验中A发生的次数服从二项分布.5.求离散型随机变量的分布列可分三个步骤进行:写出随机变量的所有可能取值xi(i=1,2,3,);求出的各个取值对应的概率P(=xi);列成表格.A6.求离散型随机变量在某一范围内取值的概率,应转化为求取这个范围内各个值的概率之和.7.求概率分布中的参数值,一般利用P1+P2+Pi+=1建立一个关于参数的方程就可求解.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3