1、2024年中考数学圆训练专题-综合题型(二)解析1【答案】(1)证明:连接OC,点C是AD的中点,AC=DC,ABC=EBC,OC=OB,ABC=OCB,EBC=OCB,OCBE,BECE,半径OCCE,CE是O切线;(2)解:连接AC,AB是O的直径,ACB=90,ACB=CEB=90,ABC=EBC,ACBCEB,ABBC=BCBE,4BC=BC3,BC=23;(3)解:连接OD,CD,AB=4,OC=OB=2,在RtBCE中,BC=23,BE=3,cosCBE=BEBC=323=32,CBE=30,COD=60,AOC=60,OC=OD,COD是等边三角形,CDO=60,CDO=AOC,
2、CDAB,SCOD=SCBD,S阴=S扇形COD=6022360=23,2【答案】(1)证明:PA是O的切线,PAO=90如图所示,连接PO在PAO与PCO中,PA=PCOA=OCPO=POPAOPCO(SSS)PCO=PAO=90C为O上的一点PC是O的切线;(2)证明:PC是O的切线;OCPD,sinD=OCOD=PAPDPDOC=PAOD(3)解:BC=BC,CAB=30,OD=8COD=2CAB=60,OCPDD=30,OC=12OD=4CD=43,S阴影=SOCDS扇形OBC=12COCD60360CO2=124431642=83833【答案】(1)证明:AC=AC,ADC=BOB=
3、OC,B=OCBCO平分BCD,OCB=OCD,ADC=OCDCEAD,ADC+ECD=90,OCD+ECD=90,即CEOCOC为O的半径,CE是O的切线(2)解:连接OD,得OD=OC,ODC=OCDOCD=OCB=B,ODC=B,CO=CO,OCDOCB,CD=CBAB是O的直径,ACB=90,AC=ABsinB=1035=6,CB=AB2AC2=10262=8,CD=8,CE=CDsinADC=CDsinB=835=2454【答案】(1)证明:AB是O的直径,BECD, ACB=90=BED,CAB=CDB,DBEABC;(2)解:AC=5,BC=25,ACB=90, AB=AC2+B
4、C2=5,tanABC=ACBC=12,AF=2,BF=3,DBEABC,ABC=DBE,tanABC=tanDBE=DEBE=12,设DE=x,则BE=2x,BD=5x,AFC=BFD,CAB=CDB,ACFDBF,ACBD=AFDF=CFBF,55x=2DF,则DF=2x,EF=x=DE,BD=BF=3,5x=3, 解得x=355,DE=3555【答案】(1)证明:连接BD,OD,在RtABC中,ABC=90,AB是O的直径,ADB=90,即BDAC,在RtBDC中,点E是BC的中点,BE=DE=12BC,又OB=OD,OE=OE,OBEODE(SSS),OBE=ODE=90,D在O上DE
5、是O的切线(2)解:由(1)中结论,得BC=2DE=10,在RtBDC中,sinC=BDBC=BD10=45,BD=8,CD=BC2BD2=6,A+C=90,A+ABD=90,C=ABD,ADB=BDC=90,ADBBDC,ADBD=BDCD,AD=BD2CD=826=323;(3)证明:OA=OB,BE=CE,OEAC,OEB=C,OBE=BDC=90,OBEBDC,OEBC=BECD,由(1)中结论OBEODE,得BE=DE,BC=2DE,OE2DE=DECD,即2DE2=CDOE6【答案】(1)证明:连接OA,如图所示:AB与O相切于点A,OAB=90,OCAB,AOC=90,ADC=4
6、5,OC=OA,OCA=45,OCA=ADC;(2)解:过点A作AHBC,过点C作CFBA交BA的延长线于点F,如图所示:由(1)得OCA=ADC=45,AHD为等腰直角三角形,AD=2,AH=DH=2,tanB=13,BH=32,AB=AH2+BH2=25,由(1)得AOC=OAF=90,CFBA,四边形OCFA为矩形,OA=OC,四边形OCFA为正方形,CF=FA=OC=r,B=B,AHB=CFB=90,ABHCBF,BHBF=AHCF即3225+r=2r,解得:r=5,OC=57【答案】(1)证明:如图,连接OE,OE=OA,OAE=OEA,AE平分BAC,DAE=OAE,OEA=DAE
7、,ADOE,ADDE,OEP=ADE=90,PE是O的切线;(2)解:设OE=x,则OP=OB+BP=OE+BP=x+4, sinP=13OEOP=xx+4=13,解得x=2,OP=6,AP=AO+OP=8,AD=13AP=83,根据勾股定理可得EP=OP2OE2=42,DP=AP2AD2=1623,DE=DPEP=432,AB是直径,AEB=90,CED+AED=90,CED+C=90,DEA=C,CDEEDA,DEDC=ADDE,DC=DE2AD=43 8【答案】(1)解:对角线BD是O的直径,OABDAB=AD,BCA=DCA,CA平分BCD(2)解:对角线BD是O的直径, BAD=BC
8、D=90,DCBC,DAABAEBC,CEAB,DCAE,DACE,四边形AECD平行四边形,DC=AE=3,又BD=33,BC=(33)232=329【答案】(1)证明:连接OD,OC,如图:AD=CD,AOD=DOC,四边形ABCD内接于O,AB为O的直径,ACB=90,OC=OA=OB=OD,AOC是等腰三角形,又AOD=DOC,OD垂直平分AC,ADM=DAC,ACMN,ODMN,即MN是O的切线;(2)证明:连接BD,如图:AD=ADABD=ACD,ACMN,ACB=MNB=90,CDN=ACD,CDN=ABD,DCN=BAD,CDN=ABD,ADB=DNC=90,DCN=BAD,A
9、BDCDN,CNAD=CDAB,即ADCD=ABCN,又AD=CD,AD2=ABCN;(3)解:令OD与AC交于点H,如图:DCA=DBA,sinDCA=sinDBA=ADAB=33,AB=6,AD=23,CD=AD=23,DAC=DCA,sinDCA=sinDAC=DHAD=33,DH=2,在RtAHD中,AH=AD2HD2=(23)222=22,AC=2AH=42,在RtABC中,BC=AB2AC2=62(42)2=2,ODMN,BNMN,ACBC,四边形HCND为矩形,CN=DH=2,BN=BC+CN=4ACMN,BACBMN,BABM=BCBN即6BM=24,BM=12,AM=BMBA
10、=126=610【答案】(1)证明:连接AD、AE、OD、OE, AB=AC,B=C,在ABD和ACE中,AB=ACB=CBD=CE,ABDACE(SAS),AD=AE,弧AD=弧AE,AO垂直平分DE,即AFDE;(2)解:设O的半径为x, 由(1)可知AFDE,又AB=AC,F为BC中点,BF=CF=12BC=6,在ABF中,AF=AB2BF2=10262=8,在DOF中,DF=BFDB=62=4,OF=AFAO=8x,OD=x,OD2=DF2+OF2x2=42+(8x)2,解得x=5,O的半径为511【答案】(1)证明:连接OD,则ODOA,ODAOAD,AD平分CAB,OADDAC,O
11、DADAC,ODAC,DEAC,ODFAED90,OD是O的半径,且DEOD,直线DE是O的切线(2)证明:线段AB是O的直径,ADB=90,ADM180ADB90,MDAM90,ABMDAB90,DAMDAB,MABM,ABAM(3)解:AEF90,F30,BAM60,ABM是等边三角形,M60,DEM90,ME1,EDM30,MD2ME2,BDMD2,BDFEDM30,BDFF,BFBD212【答案】(1)证明:如图所示,连接OA, CD是O直径,CAD=90,OAC+OAD=90,又OA=OD,OAD=ODA,BAC=ADB,OAD=BAC,BAC+OAC=90,即BAO=90,ABOA,又OA为半径,直线AB是O的切线;(2)解:BAC=ADB,B=B, BCABAD,ACAD=BCBA,由BC=2OC知,令半径OC=OA=r,则BC=2r,OB=3r,在RtBAO中,AB=OB2OA2=22r,在RtCAD中,tanADC=ACAD=BCBA=2r22r=22,即tanADB=22;(3)解:在(2)的条件下,AB=22r=26, r=3,CD=23,在RtCAD中,ACAD=22,AC2+AD2=CD2,解得AC=2,AD=22,AP平分CAD,CAP=EAD,又APC=ADE,CAPEAD,ACAE=APAD,AEAP=ACAD=222=42