1、2021年高考桂林市第一次联合调研考试高三数学(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,则复数的实部与虚部之和为( )A.12B.11C.10D.62.已知集合,若,则可能的值为( )A.1B.2C.3D.53.七巧板是中国古代劳动人民发明的一种传统智力玩具,其历史可以追溯到公元前一世纪.明、清两代这一在民间广受喜爱的游戏逐渐流传至海外并有了一个新的名字“唐图”,至今英国剑桥大学的图书馆里还珍藏着一部七巧新谱如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )A.B.C.D.4.在平
2、面直角坐标系中,已知抛物线的顶点在坐标原点,焦点在轴上,若曲线经过点,则其焦点到准线的距离为( )A.B.C.4D.85.曲线在点处的切线的方程为( )A.B.C.D.6.设,则( )A.B.C.D.7.函数的图象可能为( )A.B.C.D.8.已知,是非零向量且满足,则的值是( )A.B.2C.D.-29.在平面直角坐标系中,圆的方程.若直线上存在一点,使过点所作的圆的两条切线相互垂直,则实数的值可以是( )A.-4B.-3C.2D.410.函数的图象向左平移个单位长度得到函数,在上有且只有5个零点,则的取值范围是( )A.B.C.D.11.已知某几何体的三视图如图所示,三视图的轮廓均为正方
3、形,则该几何体的体积为( )正视图 俯视图 侧视图A.1B.C.D.12.已知定义在上的函数,是的导函数,且恒有成立,则( );.其中所有正确结论的编号是A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知实数,满足则目标函数的最大值为_.14.展开式中的系数是_.15.在中,内角,所对的边分别为,已知,则边长的值为_.16.某市民广场有一批球形路障球(如图1所示).现公园管理处响应市民要求,决定将每个路障球改造成方便市民歇脚的立方八面体石凳(如图2所示).其中立方八面体有24条棱、12个顶点、14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几
4、何体.经过测量,这批球形路障球每个直径为,若每个路障球为改造后所得的立方八面体的外接球,则每个改造后的立方八面体表面积为_.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)中华人民共和国道路交通安全法规定:机动车行驶时,驾驶人、乘坐人员应当按规定使用安全带,摩托车驾驶人及乘坐人员应当按规定佩戴安全头盔.虽然电动自行车不属于机动车,但是电动自行车使用频率高且车速较快,据统计摩托车、电动自行车驾乘人员死亡事故中约80%为颅脑损伤致死.为了维护电动自行车使用人
5、的生命健康安全,全国多个地区出台各项规定要求电动自行车驾驶人和乘坐人都必须佩戴安全头盔.下表是某市一主干路段,交警对电动车驾驶人和乘坐人“不佩戴安全头盔”人数统计数据:月份678910不佩戴安全头盔人数115100959070(1)请利用所给数据求出该路段电动自行车驾驶人和乘坐人“不佩戴安全头盔”人数与月份之间的线性回归方程.(2)利用(1)中的回归方程,预测该路段12月份“不佩戴安全头盔”驾驶人和乘车人人数;附:,.8.(12分)设公差不为零的等差数列满足,且,成等比数列.(1)求数列的通项公式;(2)若数列的前项和为,求使得成立的最小正整数.19.(12分)在平面直角坐标系中,已知椭圆中心
6、在原点,焦距为2,右准线的方程为.过的直线交于,两点.(1)求椭圆的方程;(2)若,求直线的方程.20.(12分)如图所示,在三棱锥中,侧棱平面,为线段中点,.(1)证明:平面;(2)设是线段上一点,二面角的正弦值为,求的值.21.(12分)设函数.(1)求函数的极小值;(2)求证:在上有且仅有一个零点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程(10分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的极坐标方程和的直角坐标方程;(2)
7、若曲线的极坐标方程为,与的交点为,与异于极点的交点为,求.23.选修4-5:不等式选讲(10分)已知函数,.(1)若的最小值为2,求实数的值;(2)若关于的不等式的解集为,若,求实数的取值范围.2021年高考桂林市第一次联合调研考试高三数学(理科)参考答案、提示及评分细则1.C ,则实部与虚部之和为10.2.D ,.故选D.3.A 设正方形边长为,则其面积,阴影部分面积,所求概率.4.D 设抛物线方程:,代入得,其焦点到准线的距离为8.5.B ,则切线方程为.6.D ,所以.7.D 因为,故函数是奇函数,取,则,故选D.8.B 设,的夹角为;,又,.9.C ,过点所作的圆的两条切线相互垂直,所
8、以,及两切点构成正方形,在直线上,圆心到直线的距离.计算得到.10.D 依题意得,如图:因为,所以,解得,所以D正确.11.D 由三视图可知,该几何体是由正方体截取四个角所得,其体积为.12.A 设,则,因为时,所以时,因此在上单调递增,所以,即,.13.9 作出不等式组对应的平面区域如图:由,得表示斜率为,纵截距为的一组平行直线,平移直线,当直线经过点时,此时直线截距最大,最大,此时.14.945 展开式的通项公式,令,解得:,系数为945.15.8 ,由解得或(舍去),.16. 由题意知,立方八面体表面有8个正三角形,再加上6个小正方形,且正方形边长与正三角形边长相等.当立方八面体外接于路
9、障球时体积最大,即路障球为立方八面体的外接球.设立方八面体棱长为,外接球直径,则.立方八面体表面积.17.解:(1),所以,与之间的回归直线方程为;(2)当时,预测该路段12月份的“不佩戴安全头盔”驾驶人与乘车人为54人.18.解:(1)设等差数列的公差为.因为,成等比数列,所以,即,整理得.又因为.所以联立,解得,.所以.(2)由(1)可得,所以,由在是单调减函数,是单调减函数,则是单调递减数列.又,则能使得成立的最小正整数为4.19.解(1)设椭圆方程为,其中,解得:,故所求椭圆方程为号.(2)设方程为,代入椭圆中得:,即,设,则,由得,解得.则直线的方程为.20.(1)证明:因为,为线段
10、中点,所以.因为平面,平面,所以.又因为平面,平面,所以平面.(2)解:在三棱锥中,在平面内作于.设为延长线上一点,.则,.所以为基底建立空间直角坐标系.由题设得,设,所以.设,分别为平面、平面的一个法向量.则,即,不妨取,.因为二面角的正弦值为.所以,(舍)或.即的值为.21.解:(1),由,得,所以函数在区间上是增函数;由,得,所以函数在区间上是减函数.故在处取得极小值,且.(2),由,得,所以函数在区间上是增函数;由,得,所以函数在区间上是减函数.故在处取得最小值,且,当时,则,当时,由则,此时,又,又图象不间断,在时没有零点,在有且仅有一个零点.综上所述,在上有且仅有一个零点.22.解:(1)因为直线的参数方程为(为参数),所以直线的普通方程为,又,故直线的极坐标方程为.由曲线的极坐标方程为,得,所以曲线的直角坐标方程为.(2),则,解得.又,所以.23.解:(1),解得:或.(2)由得:,当时,即:,即:由,解得:.即的取值范围为:.