1、圆周角的定理教学目标(一)知识与技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、准确地运用圆周角定理及其推论进行简单的证明计算。 (二)过程与方法1、通过观察、比较、分析圆周角与圆心角的关系发展学生合情推理和演绎推理的能力。2、通过观察图形,提高学生的识图的能力3、通过引导学生添加合理的辅助线,培养学生探究问题的兴趣。 (三)情感与价值观1、经过探索圆周角定理的过程,发展学生的数学思考能力。2、通过积极引导,帮助学生有意识主动探究,并能在探究中获得成功的体验。教学重点圆周角定理、圆周角定理的推导及运用它们解题教学难点1 认识圆周角定理需要分三种情况逐一证明的必要性。2
2、 推论的灵活应用以及辅助线的添加教学突破让学生学会分类讨论、转换化归是教学突破的关键教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容,制作圆形纸片教学过程活动1: 创设情景,引入概念师:课件(出示圆柱形海洋馆图片)右图是圆柱形海洋馆的俯视图海洋馆的前侧延伸到海洋里,并用玻璃隔开,人们站在海洋馆内部,透过其中的圆弧形玻璃窗可以观看到窗外的海洋动物如图是圆柱形的海洋馆横截面的示意图, 表示圆弧形玻璃窗同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,丙、丁分别站在其他靠墙的位置D和E,师:同学甲的视角AOB的顶点在圆心处,我们称这样的角为圆心角同学乙的视角AC
3、B、同学丙的视角ADB和同学丁的视角AEB不同于圆心角,是与圆有关的另一类角,我们称这类角为圆周角师:提出问题问题1:观察ACB、ADB和AEB的边和顶点与圆的位置有什么共同特点?问题2:ACB、ADB和AEB与AOB有什么区别?问题3:ACB、ADB和AEB有哪些共同点?(教师引导学生进行探究,并关注以下问题)1、 问题的出示是否引起学生的兴趣2、 学生是否理解示意图3、 学生是否理解圆周角的定义4、 学生是否清楚了要探究的数学问题生:这三个角的共同点有两个:顶点都在圆周上;两边都与圆相交师:评价并鼓励学生的总结给出肯定,我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角(教师板书圆周角定义
4、,并强调定义的两个要点,学生在学案上写出圆周角的定义)设计意图:从生活中的实例入手,让学生经历观察、分析,抽象出图形的共同属性,得出圆周角定义,理解圆周角概念的本质 跟踪练习:请同学们根据定义回答下面问题:在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么? (学生思考片刻之后,教师就每个图形分别请一位学生作答)设计意图:为了使学生更加容易地掌握概念,此处教师并排地呈现正例和反例,可以有利于学生对本质属性与非本质进行比较活动2:问题探究探究同弧所对圆周角及圆周角与圆心角的关系师:下面我们继续研究海洋馆的问题,设想你是一名游客,甲、乙、丙、丁四位同学的位置供你选择,你认为在哪个位置看到的海洋景
5、象范围更广一些?预设生:(会很肯定的说)当然是同学甲的位置可以看到更广的海洋范围了师提出:你是如何知道的?预设生1:因为我发现AOB比ACB、ADB和AEB都大预设生2:因为发现在圆内当角的顶点距离弧越近角就越大师提出:如果在乙、丙、丁三位同学的位置中选择,哪个位置看到的海洋范围更广一些?预设生:(看了图形想了想)三个位置看到海洋范围的大小应该是一样的师提出问题:1、弧AB所对的圆周角的个数有多少个?2、弧AB所对的圆周角的度数是否发生变化?预设生:有无数个,度数相等师:你是怎么知道的?预设生:观察猜到的。师:学习数学需要有观察、猜想但更重要的还要验证。请同学们验证你们的说法,并与同伴交流师提
6、出问题:弧AB所对的圆周角与其所对的圆心角有什么关系?(学生分组开始动手操作验证:有的借助量角器,用度量的方法进行验证;有的采用折叠重合的方法进行验证)预设生:(兴奋地惊叫着)老师,我发现了:同学乙、丙、丁的视角ACB、ADB和AEB相等,同学甲的视角AOB比其他同学的视角都大,是它们的2倍!(其他同学也都兴奋得不得了,教室里顿时一片欢腾)设计意图:引导学生经历观察、猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质,感知基本几何事实,初步体会两种数量关系:同弧所对的圆周角和圆心角的关系;同弧所对的圆周角的关系 师:下面,老师用计算机进一步验证我们刚才所得到的结论:(教师开始在计算机
7、上进行验证)首先采用几何画板的度量功能,量出AOB、ACB、ADB和AEB,发现:AOB最大,ACB=ADB=AEB,接着,采用计算功能,计算ACB和AOB的比值,发现:ACB:AOB=1:2然后教师分别从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:拖动圆周角的顶点使其在圆周上运动;改变圆心角的度数;改变圆的半径大小设计意图:通过几何画板做进一步演示与验证,用几何动态的语言来研究圆周角与圆心角的关系,在某些量变化的过程中让学生观察不变的数量关系,帮助学生更好地理解圆周角与圆心角的关系师:既然这样,我们请一位同学把所发现的结论用文字语言表述一下预
8、设生1:同弧所对的圆周角相等,并且都等于圆心角的一半预设生2:他的说法不准确,应该是:在同圆或等圆中,同弧所对的圆周角相等,并且都等于这条弧所对的圆心角的一半丢掉了“在同圆或等圆中”和“这条弧所对的”这两点师:前一位同学总结得很好,但后一位同学总结得更准确,我们要学习他们这种严谨治学的态度和精神设计意图:把直观操作与逻辑推理有机结合,使将要进行的推理论证成为学生观察、实验、探究得出结论的自然延续活动3:用分类讨论的方法证明定理师: 为了更好地说明结论的正确性,下面我们探究其论证方法先请同学们在右图的O中尽可能多地画所对的圆周角,并思考圆心与圆周角有哪几种位置关系?(学生分组画图,每个小组总结所
9、画的图形的情况,教师巡视,在同学们所画的图形中发现圆心与圆周角的三种位置关系的例子,并在展示台上演示)预设生1:圆心在圆周角的一边上预设生2,圆心在圆周角的内部,预设生3在圆周角的外部师:圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部(如下图)第一种情况第二种情况第三种情况师:在上述三种情况中我们先选择其中的一种情况进行证明,选哪种情况,如何证明?(学生先独立思考, 然后在同伴间悄悄交流自己的思路)预设生:选择第一种情况进行证明,因为圆心在圆周角的一边上,是最简单的一种情况因为圆心在圆周角的一边上,所以AC是圆的直径,由同圆半径相等可知,OC=OB,
10、所以C=B,根据定理“三角形的外角等于和它不相邻的两个内角的和”可得,AOB=C+B=2C,即同弧所对的圆周角等于这条弧所对的圆心角的一半师:证明得非常好,掌声给予鼓励!师:当圆心在圆周角的一边上的时候,圆周角ACB的边AC部分就是O的直径,因此给证明思路的寻找带来了不少方便,当圆心不在圆周角的边上时,比如在角的内部,沿CO对折O,展开后你有什么发现?对该情况下命题的证明有哪些启示?(学生开始对折圆形纸片,观察,分析,交流)预设生:由对折发现,可以转化为第一种情况的证明,即,如果做过点C的直径CD,那么,由(1)中的结论可知:ACD=AOD,BCD=BOD,两式相加即可得到ACB=AOB师:很
11、好!请同学们在学案上写出这种情况下的证明过程,之后完成最后一种情况的证明,同伴之间交流自己的证明思路(各小组学生思考交流后一种情况的证明思路,完成证明过程一名学生黑板上展示证明过程,教师做思路和规范性点评)设计意图:在本段的教学中,注意突出图形性质的探究过程,重视学生主体地位的落实,通过观察度量、实验操作、图形变换、合情推理来探索图形的性质,从而让学生学会分析问题和解决问题的方法另外,教学时尽可能地从数学语言的三种形态“文字语言、图形语言、符号语言”进行描述,以强化对数学知识的学习与理解,加强数学语言的运用与表达师:通过上面的证明,我们得到:同弧所对的圆周角等于这条弧所对的圆心角的一半其实,等
12、弧的情况下该命题也是成立的,命题“同弧或等弧所对的圆周角相等”也是正确的,想一想为什么?(教师板书)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半活动4:巩固练习,拓展性质1、如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4各内角分成8个角,这些角中哪些是相等的角?2、如图,点A、B、C、D在O上,若C=60,则D=_,O=_3、如图,等边ABC的顶点都在O上,点D是O上一点,则BDC=_(学生独立思考,交流,回答问题,教师通过学生练习,及时发现问题,评价教学效果)设计意图:习题的作用是将基本知识技能化,通过技能的训练帮助学生理解基本知识比
13、如在第3题中,学生要求BDC,首先要根据定义判断这个角是圆中的什么角?要求它的值应该建立与哪个量的关系?(弧)借助于这个量又可以与谁相联系?(A)通过这样的转化考察了学生对定理的理解和应用,并使学生在从复杂的图形中分解出基本图形的训练中,培养空间识图能力活动5:课堂小结,巩固反思师:问题:本节课你学到了什么知识?从中得到了什么启发?预设生:我这节课学会了圆周角的定义和圆周角的定理,知道圆周角有两个要点,同弧对的圆周角式相等的关系,圆心角和圆周角是二倍的关系预设生:我通过这节课学会了从特殊到一般的解决问题的方法,知道分类和转化的数学思想预设生:这节课的学习,我感到很高兴,因为我学到了好些解决问题的方法,更重要的是,老师的提问和鼓励使我认识到自己的能力,相信一定能学好这门课!师:同学们都反思总结得很好,真诚希望在今后的学习中能一如既往地养成勤反思多总结的好的学习习惯,使我们的学习成绩更上一层楼布置作业:P87页2、3题,习题241第4、5、12题设计意图:通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感