收藏 分享(赏)

2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx

上传人:a**** 文档编号:716775 上传时间:2025-12-13 格式:DOCX 页数:14 大小:58.03KB
下载 相关 举报
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第1页
第1页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第2页
第2页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第3页
第3页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第4页
第4页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第5页
第5页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第6页
第6页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第7页
第7页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第8页
第8页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第9页
第9页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第10页
第10页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第11页
第11页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第12页
第12页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第13页
第13页 / 共14页
2022年高考数学一轮复习 单元质检九 解析几何(含解析)新人教A版(文).docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
资源描述

1、单元质检九解析几何(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A.13B.12C.22D.223答案:C解析:因为椭圆C的一个焦点为(2,0),所以其焦点在x轴上,c=2,所以a2-4=c2,所以a2=8,a=22,所以椭圆C的离心率e=ca=22.2.到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是()A.3x-4y+4=0B.3x-4y+4=0或3x-4y-2=0C.3x-4y+16=0D.3x-4y+16=0或3x-4y-14=0答案:D解析:设所求直线方

2、程为3x-4y+m=0,由|m-1|5=3,解得m=16或m=-14.即所求直线方程为3x-4y+16=0或3x-4y-14=0.3.与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有()A.2条B.3条C.4条D.6条答案:C解析:过原点与圆x2+(y-2)2=1相切的直线有2条;斜率为-1且与圆x2+(y-2)2=1相切的直线也有2条,且此两条切线不过原点,由此可得与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有4条.4.若双曲线的顶点和焦点分别为椭圆x22+y2=1的焦点和顶点,则该双曲线的方程为()A.x2-y2=1B.x22-y2=1C.x2-y22=1

3、D.x23-y22=1答案:A解析:椭圆x22+y2=1的焦点位于x轴,且a2=2,b2=1,c2=a2-b2=1,据此可知,椭圆的焦点坐标为(1,0),x轴上的顶点坐标为(2,0),结合题意可知,双曲线的焦点位于x轴,且c=2,a=1,b=1,则该双曲线方程为x2-y2=1.5.已知椭圆x2a2+y2b2=1(ab0)与双曲线x2m2-y2n2=1(m0,n0)有相同的焦点(-c,0)和(c,0),若c是a,m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()A.33B.22C.14D.12答案:D解析:由题意可知2n2=2m2+c2,又m2+n2=c2,所以m=c2.因为c是a

4、,m的等比中项,所以c2=am,代入m=c2,解得e=ca=12.6.过点A(0,3),被圆(x-1)2+y2=4截得的弦长为23的直线方程是()A.y=-43x+3B.x=0或y=-43x+3C.x=0或y=43x+3D.x=0答案:B解析:当弦所在的直线斜率不存在时,即弦所在直线方程为x=0;此时被圆(x-1)2+y2=4截得的弦长为23.当弦所在的直线斜率存在时,设弦所在直线l的方程为y=kx+3,即kx-y+3=0.因为弦长为23,圆的半径为2,所以弦心距为22-(3)2=1.由点到直线距离公式得|k+3|k2+(-1)2=1,解得k=-43.综上所述,所求直线方程为x=0或y=-43

5、x+3.7.已知椭圆x24+y23=1的左、右焦点分别为F1,F2,过F2且垂直于长轴的直线交椭圆于A,B两点,则ABF1内切圆的半径为()A.43B.1C.45D.34答案:D解析:由x24+y23=1得a=2,c=1,根据椭圆的定义可知ABF1的周长为4a=8,ABF1的面积为12|F1F2|yA-yB|=1223=3=128r,解得r=34,故选D.8.(2020全国,文11)设F1,F2是双曲线C:x2-y23=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则PF1F2的面积为()A.72B.3C.52D.2答案:B解析:由题意知a=1,b=3,c=2.不妨设F1,F2分别为双

6、曲线C的左、右焦点,则F1(-2,0),F2(2,0).因为|OP|=2,所以点P在以O为圆心,F1F2为直径的圆上,故PF1PF2,则|PF1|2+|PF2|2=(2c)2=16.由双曲线的定义可知|PF1|-|PF2|=2a=2,所以|PF1|2+|PF2|2-2|PF1|PF2|=4,所以|PF1|PF2|=6,所以PF1F2的面积为12|PF1|PF2|=3.9.设双曲线x2a2-y2b2=1的两条渐近线与直线x=a2c分别交于A,B两点,F为该双曲线的右焦点.若60AFB90,则该双曲线的离心率的取值范围是()A.(1,2)B.(2,2)C.(1,2)D.(2,+)答案:B解析:双曲

7、线x2a2-y2b2=1的两条渐近线方程为y=bax,当x=a2c时,y=abc,所以不妨令Aa2c,abc,Ba2c,-abc.因为60AFB90,所以33kFB1,即33abcc-a2c1,即33ab1.所以13a2c2-a21,即1e2-13,故2e0)与双曲线x2a2-y2b2=1(a0,b0)的两条渐近线分别交于两点A,B(A,B异于原点),抛物线的焦点为F.若双曲线的离心率为2,|AF|=7,则p=()A.3B.6C.12D.42答案:B解析:因为双曲线的离心率为2,所以e2=c2a2=a2+b2a2=4,即b2=3a2,所以双曲线x2a2-y2b2=1(a0,b0)的两条渐近线方

8、程为y=3x,代入y2=2px(p0),得x=23p或x=0,故xA=xB=23p.又因为|AF|=xA+p2=23p+p2=7,所以p=6.12.已知椭圆E:x2a2+y2b2=1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.0,32B.0,34C.32,1D.34,1答案:A解析:如图,取椭圆的左焦点F1,连接AF1,BF1.由椭圆的对称性知四边形AF1BF是平行四边形,则|AF|+|BF|=|AF1|+|AF|=2a=4.故a=2.不妨设M(0,b),则|

9、30-4b|32+(-4)245,即b1.所以e=ca=1-ba21-122=32.因为0e1,所以00).又直线被抛物线截得的线段长为4,所以4a=4,即a=1.所以抛物线的焦点坐标为(1,0).14.在平面直角坐标系xOy中,双曲线x2a2-y2b2=1(a0,b0)的右支与焦点为F的抛物线x2=2py(p0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.答案:y=22x解析:抛物线x2=2py的焦点F0,p2,准线方程为y=-p2.设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1+p2+y2+p2=y1+y2+p=4|OF|=4p2=2p.所

10、以y1+y2=p.联立双曲线与抛物线方程得x2a2-y2b2=1,x2=2py,消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2=2pb2a2=p,所以b2a2=12.所以该双曲线的渐近线方程为y=22x.15.设抛物线y2=4x的焦点为F,准线为l,已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A,若FAC=120,则圆的方程为.答案:(x+1)2+(y-3)2=1解析:抛物线y2=4x的焦点F(1,0),准线l的方程为x=-1,由题意可设圆C的方程为(x+1)2+(y-b)2=1(b0),则C(-1,b),A(0,b).FAC=120,kAF=tan120=-3,直线AF

11、的方程为y=-3x+3.点A在直线AF上,b=3.则圆的方程为(x+1)2+(y-3)2=1.16.若关于x,y的方程x24-t+y2t-1=1所表示的曲线C,给出下列四个命题:若C为椭圆,则1t4或t1;曲线C不可能是圆;若C表示椭圆,且长轴在x轴上,则1t0,t-10,且4-tt-1,解得1t4,且t52,所以不正确;若C为双曲线,则有(4-t)(t-1)4或tt-10,解得1t0).设抛物线W的焦点在直线AB的下方.(1)求k的取值范围;(2)设C为W上一点,且ABAC,过B,C两点分别作W的切线,记两切线的交点为D,判断四边形ABDC是否为梯形,并说明理由.解:(1)抛物线y=x2的焦

12、点为0,14.由题意,得直线AB的方程为y-1=k(x-1),令x=0,得y=1-k,即直线AB与y轴相交于点(0,1-k).因为抛物线W的焦点在直线AB的下方,所以1-k14,解得k0,所以0kb0)的两个焦点,P为C上的点,O为坐标原点.(1)若POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1PF2,且F1PF2的面积等于16,求b的值和a的取值范围.解:(1)连接PF1.由POF2为等边三角形可知在F1PF2中,F1PF2=90,|PF2|=c,|PF1|=3c,于是2a=|PF1|+|PF2|=(3+1)c,故C的离心率e=ca=3-1.(2)由题意可知,满足条件的点

13、P(x,y)存在,当且仅当12|y|2c=16,yx+cyx-c=-1,x2a2+y2b2=1,即c|y|=16,x2+y2=c2,x2a2+y2b2=1.由及a2=b2+c2得y2=b4c2,又由知y2=162c2,故b=4.由得x2=a2c2(c2-b2),所以c2b2,从而a2=b2+c22b2=32,故a42.当b=4,a42时,存在满足条件的点P.所以b=4,a的取值范围为42,+).21.(12分)已知抛物线E的顶点为平面直角坐标系xOy的坐标原点O,焦点为圆F:x2+y2-4x+3=0的圆心F.经过点F的直线l交抛物线E于A,D两点,交圆F于B,C两点,A,B在第一象限,C,D在

14、第四象限.(1)求抛物线E的方程;(2)是否存在直线l使2|BC|是|AB|与|CD|的等差中项?若存在,求直线l的方程;若不存在,请说明理由.解:(1)圆F的方程为(x-2)2+y2=1,圆心F的坐标为(2,0),半径r=1.根据题意设抛物线E的方程为y2=2px(p0),p2=2,解得p=4.抛物线E的方程为y2=8x.(2)2|BC|是|AB|与|CD|的等差中项,|BC|=2r,|AB|+|CD|=4|BC|=42r=8.|AD|=|AB|+|BC|+|CD|=10.讨论:若l垂直于x轴,则l的方程为x=2,代入y2=8x,解得y=4.此时|AD|=8,不满足题意;若l不垂直于x轴,则

15、设l的斜率为k(k0),此时l的方程为y=k(x-2),由y=k(x-2),y2=8x,得k2x2-(4k2+8)x+4k2=0.设A(x1,y1),D(x2,y2),则x1+x2=4k2+8k2.抛物线E的准线方程为x=-2,|AD|=|AF|+|DF|=(x1+2)+(x2+2)=x1+x2+4,4k2+8k2+4=10,解得k=2.当k=2时,k2x2-(4k2+8)x+4k2=0化为x2-6x+4=0.(-6)2-4140,x2-6x+4=0有两个不相等实数根.k=2满足题意.存在满足要求的直线l:2x-y-4=0或2x+y-4=0.22.(12分)已知椭圆x2a2+y2b2=1(ab

16、0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),EFA的面积为b22.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|=32c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PMQN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.求直线FP的斜率;求椭圆的方程.解:(1)设椭圆的离心率为e.由已知,可得12(c+a)c=b22.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0e0),则直线FP的斜率为1m.由(1)知a=2c,可得直线AE的方程为x2c+yc=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=(2

17、m-2)cm+2,y=3cm+2,即点Q的坐标为(2m-2)cm+2,3cm+2.由已知|FQ|=32c,有(2m-2)cm+2+c2+3cm+22=3c22,整理得3m2-4m=0,所以m=43,即直线FP的斜率为34.由a=2c,可得b=3c,故椭圆方程可以表示为x24c2+y23c2=1.由得直线FP的方程为3x-4y+3c=0,与椭圆方程联立3x-4y+3c=0,x24c2+y23c2=1,消去y,整理得7x2+6cx-13c2=0,解得x=-13c7(舍去)或x=c.因此可得点Pc,3c2,进而可得|FP|=(c+c)2+3c22=5c2,所以|PQ|=|FP|-|FQ|=5c2-3c2=c.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QNFP,所以|QN|=|FQ|tanQFN=3c234=9c8,所以FQN的面积为12|FQ|QN|=27c232,同理FPM的面积等于75c232,由四边形PQNM的面积为3c,得75c232-27c232=3c,整理得c2=2c,又由c0,得c=2.所以,椭圆的方程为x216+y212=1.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1