收藏 分享(赏)

2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx

上传人:a**** 文档编号:711973 上传时间:2025-12-13 格式:DOCX 页数:29 大小:646.84KB
下载 相关 举报
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第1页
第1页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第2页
第2页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第3页
第3页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第4页
第4页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第5页
第5页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第6页
第6页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第7页
第7页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第8页
第8页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第9页
第9页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第10页
第10页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第11页
第11页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第12页
第12页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第13页
第13页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第14页
第14页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第15页
第15页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第16页
第16页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第17页
第17页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第18页
第18页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第19页
第19页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第20页
第20页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第21页
第21页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第22页
第22页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第23页
第23页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第24页
第24页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第25页
第25页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第26页
第26页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第27页
第27页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第28页
第28页 / 共29页
2022年解析卷人教版九年级数学上册期中综合测评试题 卷(Ⅲ)(含详解).docx_第29页
第29页 / 共29页
亲,该文档总共29页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形

2、B直角三角形C正五边形D矩形2、将一元二次方程化成(a,b为常数)的形式,则a,b的值分别是()A,21B,11C4,21D,693、设方程的两根分别是,则的值为()A3BCD4、在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A9人B10人C11人D12人5、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是()ABCD2、对于二次函数y=2(x1)(x+3),下列说法不正确的是()A图象的开口向上B图象

3、与y轴交点坐标是(0,6)C当x1时,y随x的增大而增大D图象的对称轴是直线x=13、二次函数y=ax2+bx+c(a0)的大致图象如图所示(1x=h2,0xA1)下列结论中正确的是()A2a+b0Babc0C若OC=2OA,则2bac=4D3ac04、如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论中正确的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 A2a+b=0Babc0C方程ax2+bx+c=3有两个相等的实数根D抛物线与x轴的另一个交点是(1,0)E

4、当1x4时,有y2y15、如图所示,抛物线y=ax2+bx+c的顶点为(1,3),以下结论中不正确的是( )Ab24ac0B4a2b+c0C2cb=3Da+3=c第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是 _2、已知(m1)3x50是一元二次方程,则m_3、已知关于的一元二次方程,有下列结论:当时,方程有两个不相等的实根;当时,方程不可能有两个异号的实根;当时,方程的两个实根不可能都小于1;当时,方程的两个实根一个大于3,另一个小于3以上4个结论中,正确的个数为_4、把抛物线向左平移1个单位长度,

5、再向下平移3个单位长度,得到的抛物线的解析式为_5、如图,在平面直角坐标系中,坐标原点为O,抛物线ya(x2)21(a0)的顶点为A,过点A作y轴的平行线交抛物线于点B,连接AO、BO,则AOB的面积为_四、解答题(5小题,每小题8分,共计40分)1、如图,在平面直角坐标系中,ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当MAB为直角三

6、角形时,直接写出m的值 线 封 密 内 号学级年名姓 线 封 密 外 2、已知关于x的一元二次方程有两个实数根(1)求k的取值范围;(2)若,求k的值3、在平面直角坐标系中,抛物线交x轴于点,过点B的直线交抛物线于点C(1)求该抛物线的函数表达式;(2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由4、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;

7、(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标5、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别

8、有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?-参考答案-一、单选题1、D【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图

9、形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形2、A【解析】【分析】根据配方法步骤解题即可【详解】解:移项得,配方得,即,a=-4,b=21故选:A【考点】本题考查了配方法解一元二次方程,解题关键是配方:在二次项系数为1时,方程两边同时加上一次项系数一半的平方3、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数

10、以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率4、C【解析】【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0, 线 封 密 内 号学级年名姓 线 封 密 外 解得:x1=11,x2=-10(舍去),故答案为C.【考点】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方

11、程.5、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,ACD=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性

12、质二、多选题1、ABC【解析】【分析】根据根的判别式=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用【详解】解:A、=b2-4ac=02-414=-160,此方程没有实数根,故本选项符合题意;B、=b2-4ac=(-4)2-414=0,此方程有两个相等的实数根,故本选项符合题意;C、=b2-4ac=12-413=-110,此方程没有实数根,故本选项符合题意;D、=b2-4ac=22-41(-1)=80,此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC【点睛】本题考查了一元二次方程根的判别式的知识此题比较简单,注意掌握一元二次方程ax2+bx+c=0

13、(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根2、ACD【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】将函数解析式变成顶点式,依照二次函数的性质对比四个选项即可得出结论【详解】解:A、y=-2(x-1)(x+3),a=-20,图象的开口向下,故本选项错误,符合题意;B、y=-2(x-1)(x+3)=-2x2-4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确,不符合题意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即当x-1,y随x的增大而减少,故

14、本选项错误,符合题意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即图象的对称轴是直线x=-1,故本选项错误,符合题意故选:ACD【点睛】本题考查了二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联系二次函数性质对比四个选项即可3、ACD【解析】【分析】根据二次函数的图象和性质进行分析即可注意抛物线的开口方向以及对称轴的位置【详解】解:抛物线开口向下,抛物线的对称轴,2a+b0,故A正确;抛物线与y轴的交点在y轴的负半轴,abc0,故B错误;若OC=2OA,则A ,2bac=4,故C正确;抛物线的对称轴,当时,即,故D正确故选:ACD【点睛】本题考查了二次函数的图象与系数之

15、间的关系,熟练运用抛物线的对称轴是解题的关键4、ACE【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系进行判断即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:抛物线开口向下,抛物线的对称轴,2a+b=0,故A正确;抛物线与y轴的交点在y轴的正半轴,abc0,故B错误;抛物线y1=ax2+bx+c与直线y=3只有一个交点,因此方程ax2+bx+c=3有两个相等的实数根,故C正确;根据抛物线的对称性可知,抛物线与x轴的另一个交点是(2,0),故D错误;根据图象,当1x4时,抛物线在直线的上方,因此有y2y1,故E正确;故选:ACE【点睛】本题考查了二次函

16、数和一次函数的图象问题,认真观察图象找到有用信息是解题的关键5、ABC【解析】【分析】根据抛物线的图象与性质即可判断【详解】抛物线与x轴有两个交点,0,b2-4ac0,故A选项错误;x=-2时,y0,x=-2时,y=4a-2b+c0,故B选项错误;顶点为(-1,3),y=a-b+c=3,把代入得,化简得,故C选项错误;把代入得,化简得,故D选项正确;不正确的是ABC;故选:ABC【点睛】本题考查抛物线的图象与性质,解题的关键是熟练运用抛物线的图象与性质,本题属于中等题型三、填空题1、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股

17、定理求出斜边长 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x5)cm,根据题意,得,所以,解得,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x2,当x2时,x57,由勾股定理,得直角三角形的斜边长为cm故答案为:cm【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用2、1【解析】【分析】根据一元二次方程的定义m-10,且,解答即可【详解】(m1)3x50是一元二次方程,m-10,且,m-10,且,故答案为:-1【考点】本题考查了一元二次方程的定义即含有一个未知

18、数且含未知数项的次数最高是2的整式方程,熟练掌握定义是解题的关键3、【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案【详解】解:根据题意,一元二次方程,;当,即时,方程有两个不相等的实根;故正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故正确;由,则,解得:或;故正确;正确的结论有;故答案为: 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题4、【解析】【分析】直接根据“上加下

19、减,左加右减”进行计算即可【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键5、【解析】【分析】先求得顶点A的坐标,然后根据题意得出B的横坐标,把横坐标代入抛物线,得出B点坐标,从而求得A、B间的距离,最后计算面积即可【详解】设AB交x轴于C抛物线线ya(x2)21(a0)的顶点为A,A(2,1),过点A作y轴的平行线交抛物线于点B,B的横坐标为2,OC=2把x=2代入得y=-3,B(2,-3),AB=1+3=4,故答案为:4【考点】本题考查了二次函

20、数图象上点的坐标特征,求得A、B的坐标是解题的关键四、解答题1、 (1); 线 封 密 内 号学级年名姓 线 封 密 外 (2);(3)m的值为3或1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根据MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可(1)解:解

21、方程得,线段OB,OC()的长是关于x的方程的两个根,OB1,OC6,CO2AO,OA3,设直线AC的解析式为,把点,代入得,解得,直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,直线AB的解析式为,PDx轴,垂足为D,PD与直线AB交于点Q,点P的横坐标为a,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,当时,当时,;(3)解:, 线 封 密 内 号学级年名姓 线 封 密 外 ,当MAB=90时,解得,当ABM=90时,解得m=7,当AMB=90时,解得,m的值为3或1或2或7【点睛】本题考查解一元二次方程、待定系数法

22、求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键2、 (1) ;(2) 【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可【详解】解:(1)由题意可知,整理得:,解得:,的取值范围是:故答案为:(2)由题意得:,由韦达定理可知:,故有:,整理得:,解得:,又由(1)中可知,的值为故答案为:【点睛】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根3、(1);(2);(3)存在,或 或或【解析】 线

23、 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐标,进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点

24、,代入中,得:解得该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方程组的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当时,的最大值为 线 封 密 内 号学级年名姓 线 封 密 外 (3)存在设M(p,q),其中,且p0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p

25、=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题意 综上所述,满足题意的点M的坐标为或或或【点睛】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法4、(1)y=x2+2x+3;(2)S四边形ACFD= 4;Q点坐标为(1,4)或(,)或(,)【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的逻辑思维,解题时先根据已

26、知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标【详解】(1)由题意可得,解得,抛物线解析式为y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,F(1,4),C(0,3),D(2,3),CD=2,且CDx轴,A(1,0), 线 封 密 内 号学级年名姓 线 封 密 外 S四边形ACFD=SACD+SFCD=23+2(43)=4;点P在线段AB上,DAQ不可能为直角,当AQD为直角三角形时,有ADQ=90或AQD=90,i当ADQ=90时,则DQAD,A(1,0),D(2,3),直线AD解析式为y=x+1,可设直线DQ解析式为y=x+b,把D(2,

27、3)代入可求得b=5,直线DQ解析式为y=x+5,联立直线DQ和抛物线解析式可得,解得或,Q(1,4);ii当AQD=90时,设Q(t,t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=(t3),设直线DQ解析式为y=k2x+b2,同理可求得k2=t,AQDQ,k1k2=1,即t(t3)=1,解得t=,当t=时,t2+2t+3=,当t=时,t2+2t+3=,Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【点睛】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键5、

28、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得: 线 封 密 内 号学级年名姓 线 封 密 外 购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1