1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、二次函数的图象的对称轴是()ABCD2、关于的一元二次方程的两根应为()
2、AB,CD3、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是()ABCD4、直线不经过第二象限,则关于的方程实数解的个数是().A0个B1个C2个D1个或2个5、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-2二、多选题(5小题,每小题4分,共计20分)1、对于实数a,b,定义运算“”:,例如:42,因为,所以,若函数,则下列结论正确的是()A方程的解为,;B当时,y随x的增大而增大;C若关于x的方程有三个解,则;D当时,函数的最大值为12、已知抛物线上部分点的横坐
3、标x与纵坐标y的对应值如表所示,对于下列结论:x-10123y30-1m3抛物线开口向下;抛物线的对称轴为直线;方程的两根为0和2;当时,x的取值范围是或正确的是()ABCD3、如图所示,二次函数的图象的一部分,图像与x轴交于点下列结论中正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A抛物线与x轴的另一个交点坐标是BC若抛物线经过点,则关于x的一元二次方程的两根分别为,5D将抛物线向左平移3个单位,则新抛物线的表达式为4、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是()组,进行轴对称变换的是()ABCD5、已知二次函数
4、y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(1,0),(3,0)则下列结论中正确的有()Aabc0Bb24ac0C当x1x20时,y1y2D当1x3时,y0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若关于x的一元二次方程的根的判别式的值为4,则m的值为_2、对于任意实数,抛物线与轴都有公共点则的取值范围是_3、九章算术是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程_4、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱
5、桥洞的最高点)离水面3米,水面宽4米如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_5、如图,ABC90,AC6,以AB为边长向外作等边ABM,连CM,则CM的最大值为 _四、解答题(5小题,每小题8分,共计40分)1、若二次函数图像经过,两点,求、的值.2、解关于y的方程:by21y2+23、在平面直角坐标系中,设二次函数(m是实数) 线 封 密 内 号学级年名姓 线 封 密 外 (1)当时,若点在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:4、如图,已知正方形点在边上,以为边在左侧作正方形;以为
6、邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由5、用适当的方法解下列方程:(1)x2x10;(2)3x(x2)x2;(3)x22x10;(4)(x8)(x1)12-参考答案-一、单选题1、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键2、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可【详解】x23ax+a2=0,=(3a)24a2=a2,x=.所以
7、x1=a,x2=a.故答案选B. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.3、D【解析】【分析】根据题意,图形是中心对称图形即可得出答案【详解】由题意可知,图形是中心对称图形,可得答案为D,故选:D【考点】本题考查了图形的中心对称的性质,掌握中心图形的性质是解题的关键4、D【解析】【分析】根据直线不经过第二象限,得到,再分两种情况判断方程的解的情况.【详解】直线不经过第二象限,方程,当a=0时,方程为一元一次方程,故有一个解,当a0,方程有两个不相等的实数根,故选:D.【考点】此题考查一次函数的性质:利用函数图象经过
8、的象限判断字母的符号,方程的解的情况,注意易错点是a的取值范围,再分类讨论.5、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x2二、多选题1、ABD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据题干定义求出y(2x)(x+1)的解析式,根据2xx+1及2xx+1可得x1时y2x22x,x1时,yx2+1,进而求解【详解】解:根据题意得:当2xx+1,即x1时,y(2x)22
9、x(x+1)2x22x,当2xx+1,即x1时,y(x+1)22x(x+1)x2+1,当x1时,2x22x0,解得x0(舍去)或x1,当x1时,x2+10,解得x1(舍去)或x1,(2x)(x+1)0的解是x11,x21;故A正确,B、当x1时,y2x22x,抛物线开口向上,对称轴是直线x,x1时,y随x的增大而增大,B选项正确当x1时,y2x22x2(x)2,x1时,y取最小值为y0,当x1时,yx2+10,当x0时,y取最大值为y1,如图,当0m1时,方程(2x)(x+1)m有三个解,选项C错误,选项D正确故答案为:ABD【点睛】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,
10、掌握二次函数与方程的关系2、CD【解析】【分析】根据表格可知直线x1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断,根据与x轴交点坐标结合开口方向可判断【详解】解:从表格可以看出,函数的对称轴是直线x1,顶点坐标为(1,1),此时有最小值函数与x轴的交点为(0,0)、(2,0),抛物线yax2+bx+c的开口向上故错误;抛物线yax2+bx+c的对称轴为直线x1 线 封 密 内 号学级年名姓 线 封 密 外 故错误;方程ax2+bx+c0的根为0和2故正确;当y0时,x的取值范围是x0或x2故正确;故选CD【点睛】本题考查了二次函数的图象和性质解题的关键在于根据表
11、格获取正确的信息3、ABD【解析】【分析】结合图象,根据二次函数的性质进行判断即可求解【详解】抛物线开口向下,a0,将(-1,0)代入抛物线方程,可得:4a+k=0,4a+k=0,k=-4a,k+a=-3a,a0,k+a=-3a0,即B选项正确;将k=-4a代入抛物线方程,可得:抛物线方程为:,当y=0时,方程的根为-1和3,抛物线与x轴的另一个交点为(3,0),即A项正确;将点(-3,m)代入到抛物线方程,可得m=12a,结合k=-4a,方程,化简为:,a0,即,显然方程无实数解,故C项说法错误;向左平移3个单位,依据左加右减原则,可得新抛物线为:,即D说法正确,故选:ABD【点睛】本题考查
12、了抛物线的性质与图象的知识,解答本题时需注重运用数形结合的思想4、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴据此即可解答【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C; 线 封 密 内 号学级年名姓 线 封 密 外 根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化
13、;故答案为:A;C【点睛】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系5、ABC【解析】【分析】首先根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出A的正误;抛物线与x轴有两个不同的交点,则=b2-4ac0,故B正确;根据二次函数的性质即可判断出C的正误;由图象可知:当-1x3时,y0,即可判断出D的正误【详解】解:根据图象可得:抛物线开口向上,则a0抛物线与y交与负半轴,则c0,对称轴:x=-0,b0,abc0,故A正确;它与x轴的两个交点分别为(-1,0),(3,0),则=b2-4ac0,故B正确抛物线与x轴的两个交点
14、分别为(-1,0),(3,0),对称轴是直线x=1,抛物线开口向上,当x1时,y随x的增大而减小,当x1x20时,y1y2;故C正确;由图象可知:当-1x3时,y0,故D错误;故正确的有ABC故选ABC【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)三、填空题1、【解析】【分析】利用根的判别
15、式,建立关于m的方程求得m的值【详解】关于x的一元二次方程的根的判别式的值为4,解得故答案为:【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了一元二次方程(a0)的根的判别式2、【解析】【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解【详解】解:由抛物线与轴都有公共点可得:,即,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,即的最小值为,;故答案为【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键3、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元
16、二次方程,此题得解【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或故答案为:或【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键4、【解析】【分析】设出抛物线方程y=ax2(a0)代入坐标(-2,-3)求得a【详解】解:设出抛物线方程y=ax2(a0),由图象可知该图象经过(-2,-3)点,-3=4a,a=-,抛物线解析式为y=-x2 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【考点】本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式5、#【解析】【分析】过点M作MDB
17、C,交BC的延长线于点D,设ABx,利用勾股定理表示出BC,利用解直角三角形表示出MD,BD,再利用勾股定理求得CM的长,根据配方法利用非负数的性质即可得到CM的最大值【详解】如图,过点M作MDBC,交BC的延长线于点D, 设ABx,则,ABM是等边三角形,BMABx,ABM60,ABC90,MBD30,MDBC,在RtMDC中,当x218时,CM有最大值,CM的最大值为:故答案为:【考点】本题考查勾股定理以及配方法,掌握配方法求出最值是解题的关键四、解答题1、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解
18、:将,代入中得, 解得: b=-3,c=-4.【点睛】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.2、当b1时,原方程的解为y;当b1时,原方程无实数解【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案【详解】解:移项得:by2y22+1,合并同类项得:(b1)y23,当b1时,原方程无解;当b1时,原方程的解为y;当b1时,原方程无实数解【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论3、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即
19、可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2, 线 封 密 内 号学级年名姓 线 封 密 外 P(3,c),
20、把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键4、(1);理由见解析;(2)与的数量及位置关系都不变;答案见解析【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1),由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点,四边形为平行四边形, 线 封 密 内 号学级年名姓 线 封 密 外 ,又,即【点睛】本题考查了旋转
21、的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质5、 (1),(2)x1,x22(3)x1,x2(4)x14,x25【解析】【分析】(1)利用公式法解答,即可求解;(2)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解(1)解: a1,b1,c1b24ac(1)241(1)5x即原方程的根为x1,x2(2)解:移项,得3x(x2)(x2)0,即(3x1)(x2)0,x1,x22(3)解:配方,得(x)21,x1x11,x21(4)解:原方程可化为x29x200,即(x4)(x5)0,x14,x25【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外