1、京改版八年级数学上册期末综合测评试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果是()ABCD2、一直角三角形的三边分别为2、3、x,那么x为()ABC或D无法确定3、若三角形的三边
2、为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定4、估计的值应在()A4和5之间B5和6之间C6和7之间D7和8之间5、下列黑体字中,属于轴对称图形的是()A善B勤C健D朴二、多选题(5小题,每小题4分,共计20分)1、下列说法不正确的是()A任何数都有两个平方根B若a2=b2,则a=bC=2D8的立方根是22、如果方程有增根,则它的增根可能为()Ax=1Bx=-1Cx=0Dx=33、下列结论不正确的是()A64的立方根是B没有立方根C立方根等于本身的数是0D= 4、下列约分不正确的是()ABCD5、如图:在不等边AB
3、C中,PMAB,垂足为M,PNAC,垂足为N,且PM=PN,Q在AC上,PQ=QA,下列结论,其中正确的是()AAN=AMBQPAMCBMPQNPDPM=PQ第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若一个偶数的立方根比2大,平方根比4小,则这个数是_.2、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_3、给出表格:0.00010.011100100000.010.1110100利用表格中的规律计算:已知,则_
4、(用含的代数式表示)4、如图,若,则线段长为_ 5、比较大小:_四、解答题(5小题,每小题8分,共计40分)1、如图,在中,点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接(1)的形状为_;(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;(3)当点落在边上时,若,请直接写出的长2、已知,求实数a,b的平方和的倒数3、计算:(1)(2)4、已知:如图,是的角平分线,于点 ,于点,求证:是的中垂线 5、【发现】;(1)根据上述等式反映的规律,请再写出一个等式:_【归纳】等式,所反映的规律,可归纳为一个真命题:对于任意两个有理数a,b,若,则;【应用】根据上述所归纳的真命
5、题,解决下列问题:(2)若与的值互为相反数,且,求a的值-参考答案-一、单选题1、A【解析】【详解】原式故选A.2、C【解析】【分析】分类讨论当3为斜边时和x为斜边时,利用勾股定理列出等式即可解题.【详解】解:当3为斜边时,32=22+x2,解得:x=,当x为斜边时,x2=32+22,解得:x=,x为或,故选C.【考点】本题考查了勾股定理的实际应用,中等难度,分类讨论是解题关键.3、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a3
6、0,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键4、D【解析】【分析】首先确定的值,进而可得答案【详解】解:2.224.42+37.472+38,故选:D【考点】此题主要考查实数的估算,解题的关键是熟知实数的大小及性质5、A【解析】【分析】轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据轴对称图形的定义可得答案.【详解】解:由轴对称图形的定义可得:善是轴对称图形,勤,健,朴三个字都不是轴对称图形,故符合题意,不符合题意,故选:【考点】本题考查的
7、是轴对称图形的含义,轴对称图形的识别,掌握定义,确定对称轴是解题的关键.二、多选题1、ABC【解析】【分析】由负数没有平方根,的平方根是正数的平方根有两个可判断 由平方根的含义可判断 由的含义可判断 由立方根的含义可判断 从而可得答案.【详解】解:负数没有平方根,的平方根是 故符合题意;由a2=b2可得: 故符合题意;故符合题意;8的立方根是2,故不符合题意;故选:【考点】本题考查的是平方根的含义,立方根的含义,利用平方根的含义解方程,熟悉平方根与立方根是解题的关键.2、AB【解析】【分析】根据分式方程的增根的定义即可得解【详解】解:由题意可得:方程的最简公分母为(x1)(x1),若原分式方程
8、要有增根,则(x1)(x1)0,则x1或x1,故选:AB【考点】本题考查了分式方程的增根,分式方程的增根就是使方程的最简公分母等于0的未知数的值3、ABC【解析】【分析】根据立方根的定义解答即可【详解】解:A、64的立方根是4,原说法错误,故本选项符合题意;B、有立方根,是,原说法错误,故本选项符合题意;C、立方根等于它本身的数是0、1、-1,原说法错误,故本选项符合题意;D、,故选项D不符合题意,故选ABC【考点】本题考查了立方根解题的关键是掌握立方根的定义的运用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根4、ABD【解析】【分析】根据分式的约分的方法对每个选项
9、逐个计算即可判断出正确选项【详解】A,错误,符合题意;B,错误,符合题意;C,正确,不符合题意;D,错误,符合题意;故答案选:ABD【考点】本题考查了分式的约分,熟练掌握分式的运算法则是解决本题的关键5、AB【解析】【分析】先证明,可得AN=AM,故A正确;再由PQ=QA,可得到PQAM,故B正确;假设 ,可得到AC=BC,与题意相矛盾,故C错误;再由全等三角形的性质可得PM=PN,由于直角三角形的斜边大于直角边,即可判断D错误,即可求解【详解】解:PMAB, PNAC, ,在 和中,PM=PN, ,AN=AM,故A正确;, ,PQ=QA, ,PQAM,故B正确;假设 ,B=PQN,PQAM,
10、BAC=PQN,B=BAC,AC=BC,这与不等边ABC相矛盾,故C错误;,PM=PN,在 中,PQPN,PMPQ,故D错误;故选:AB【考点】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,平行线的判定,反证法,熟练掌握相关知识点是解题的关键三、填空题1、10,12,14【解析】【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题【详解】解:2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14故答案为10,12,14【考点】本题考查立方根的定义和性质,注意本题答案不唯一求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由
11、开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同2、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tan短边:长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.3、【解析】【分析】根据题意易得,然后问题
12、可求解【详解】解:由,则;故答案为:【考点】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键4、8【解析】【分析】过点D作DHAC于H,由等腰三角形的性质可得AH=HC,DAC=DCA=30,由直角三角形的性质可证DH=CF,由“AAS”可证DHEFCE,可得EH=EC,即可求解【详解】解:如图,过点D作DHAC于H, 在DHE和FCE中, 故答案为8【考点】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键5、【解析】【分析】先估算的大小,然后再比较无理数的大小即可【详解】解:,;故答案为:【考点】本题考查了实数的比较大小,无理数的估算
13、,解题关键是正确掌握实数比较大小的法则四、解答题1、(1)等边三角形;(2)的度数不变,理由见解析;(3)2【解析】【分析】(1)由、,可得出、,结合点是中点,可得出,进而即可得出为等边三角形;(2)由(1)可得出,根据可得出,再结合、即可得出,根据全等三角形的性质即可得出,即的度数不变;(3)易证为等腰三角形,由等腰三角形及等边三角形的性质可得出,进而可得出【详解】解:(1)在中,点是中点,为等边三角形故答案为等边三角形(2)的度数不变,理由如下:,点是中点,为等边三角形,又为等边三角形,在和中,即的度数不变(3)为等边三角形,为等腰三角形,【考点】本题考查了等边三角形的判定与性质、全等三角
14、形的判定与性质、含度角的直角三角形勾股定理以及等腰三角形的性质,解题的关键是:(1)找出、;(2)利用全等三角形的判定定理找出;(3)根据等腰三角形及等边三角形的性质找出2、【解析】【分析】根据非负数的性质和分式的性质,可得a2-16=0,,a4,求出a,b,然后再求a,b的平方和的倒数即可.【详解】解:根据题意得:a2-16=0,a4,所以 a4,b8 【考点】本题考查了绝对值、二次根式和分式的性质,根据题意求出a,b的值是解题关键.3、(1)9;(2)【解析】【分析】(1)直接利用完全平方公式以及多项式乘多项式运算法则计算得出答案;(2)直接利用二次根式的乘除运算法则计算得出答案【详解】解
15、:(1);(2)【考点】本题考查了二次根式的性质与化简以及整式的混合运算,正确化简二次根式是解题的关键4、见解析.【解析】【分析】由AD是ABC的角平分线,DEAB,DFAC,根据角平分线的性质,可得DE=DF,BED=CFD=90,继而证得RtBEDRtCFD,则可得B=C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【详解】解:是的角平分线,在和中,是的角平分线,是的中垂线.【考点】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质注意掌握三线合一性质的应用.5、 (1)(2)【解析】【分析】(1)根据题目给出的规律解答;(2)根据题意列出方程,与已知方程联立解得a的值(1),符合上述规律,故答案为:;(2)与的值互为相反数,+=0,解得,代入中,解得,【考点】本题考查了立方根的性质,互为相反数的性质等知识,解题的关键是明确题意,灵活运用所学知识解决问题