收藏 分享(赏)

2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx

上传人:a**** 文档编号:710890 上传时间:2025-12-13 格式:DOCX 页数:23 大小:449.99KB
下载 相关 举报
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第1页
第1页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第2页
第2页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第3页
第3页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第4页
第4页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第5页
第5页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第6页
第6页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第7页
第7页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第8页
第8页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第9页
第9页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第10页
第10页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第11页
第11页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第12页
第12页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第13页
第13页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第14页
第14页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第15页
第15页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第16页
第16页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第17页
第17页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第18页
第18页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第19页
第19页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第20页
第20页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第21页
第21页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第22页
第22页 / 共23页
2022年解析卷京改版八年级数学上册期末专项测评试题 卷(Ⅲ)(含答案及详解).docx_第23页
第23页 / 共23页
亲,该文档总共23页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册期末专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D102、实数2021的相反数是()A20

2、21BCD3、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D854、解分式方程时,去分母化为一元一次方程,正确的是()Ax+23Bx23Cx23(2x1)Dx+23(2x1)5、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D5二、多选题(5小题,每小题4分,共计20分)1、如图, AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE

3、下列说法中正确的有()ACEBF;BABD和ACD面积相等;CBFCE;DBDFCDE2、下列说法中不正确的是()A带根号的数是无理数B无理数不能在数轴上表示出来C无理数是无限小数D无限小数是无理数3、在直角坐标系中,等边三角形的顶点A,B的坐标分别是,则顶点C的坐标可能是()ABCD4、如图,和的平分线相交于点F,过点F作,交于D,交于E,下列结论正确的是()AB,都是等腰三角形CD的周长为5、下列语句正确的是()A数轴上的点仅能表示整数B数轴是一条直线C数轴上的一个点只能表示一个数D数轴上找不到既表示正数又表示负数的点第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、

4、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_米2、计算:_3、若一个偶数的立方根比2大,平方根比4小,则这个数是_.4、若关于x的分式方程1无解,则m_5、如图,的度数为_四、解答题(5小题,每小题8分,共计40分)1、观察下列等式:解答下列问题:(1)写出一个无理数,使它与的积为有理数;(2)利用你观察的规律,化简;(3)计算:2、在四边形ABCD中,(1)如图,若,求出的度数;(2)如图,若的角平分线交AB于点E,且,求出的

5、度数;(3)如图,若和的角平分线交于点E,求出的度数3、如图,在ABC中,点D为ABC的平分线BD上一点,连接AD,过点D作EFBC交AB于点E,交AC于点F(1)如图1,若ADBD于点D,BEF=120,求BAD的度数;(2)如图2,若ABC=,BDA=,求FAD十C的度数(用含和的代数式表示)4、解分式方程:5、一个数值转换器,如图所示:(1)当输入的x为81时输出的y值是_;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值;(3)若输出的y是,请写出两个满足要求的x值-参考答案-一、单选题1、C【解析】【分析】首先对于分式进行化简,然后根据a为整数、分式值为正整数可求

6、出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分式的值为正整数,a51,5,a6,10,所有符合条件的a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键2、B【解析】【分析】直接利用相反数的定义:只有符号不同的两个数互为相反数,即可得出答案【详解】解:2021的相反数是:故选:B【考点】本题主要考查相反数的定义,正确掌握其概念是解题关键3、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,故选B【考点】本题考查垂直的性质,解题关键在于在证明4、C【解析】【分析】最简公分母是2x1,方程两边都乘以(2x1),即

7、可把分式方程便可转化成一元一次方程【详解】方程两边都乘以(2x1),得x23(2x1),故选C【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根5、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、

8、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP

9、+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHBECDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型二、多选题1、ABCD【解析】【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案【详解】是的中线, ,又 , , ,故D选项正确 , 故A选项正确; BFCE;故C选项正确是的中线, 和等底等高, 和面积相等,故B选项正确;故选:

10、ABCD【考点】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL2、ABD【解析】【分析】举出反例如,循环小数1.333,即可判断A、D;根据数轴上能表示任何一个实数即可判断B;根据无理数的定义即可判断C【详解】解:A、如2,不是无理数,故本选项错误,符合题意;B、数轴上的点与实数一一对应,无理数都能在数轴上表示出来,故本选项错误,符合题意;C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确,不符合题意;D、如1.33333333,是无限循环小数,是有理数,故本选项错误,符合题意;故选:ABD【考点】本题考查了对无理数的意

11、义的理解和运用,无理数包括:开方开不尽的数,含的,一些有规律的数3、AC【解析】【分析】根据等边三角形的性质得到BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,利用勾股定理求出CD的长,由此得到答案【详解】解:等边三角形的顶点A,B的坐标分别是,BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,顶点C的坐标可能是或,故选:AC【考点】此题考查等边三角形的性质,平面直角坐标系中点的坐标,勾股定理,熟记等边三角形的性质是解题的关键4、BCD【解析】【分析】由角平分线定义和平行线的性质得出,得出,同理可

12、得,都是等腰三角形,即可判断A、B;再根据等量代换可以得出,即可判断C;的周长,即可判断D【详解】解:A平分,同理可得,都是等腰三角形;故A选项错误,不符合题意;故B选项正确,符合题意;,故C选项正确,符合题意;的周长,故D选项正确,符合题意;故选:BCD【考点】本题考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义等知识,解题的关键是证出,5、BC【解析】【分析】根据数轴上的点与实数一一对应,以及数轴的意义逐一分析可得答案【详解】解:A、数轴上的点与实数一一对应,故原来的说法错误;B、数轴是一条直线的说法正确;C、数轴上的点与实数一一对应,故原来的说法正确;D、数轴上既不表示正数,又

13、不表示负数的点是0,故原来的说法错误;故选:BC【考点】本题考查了数轴,注意数轴上的点与实数一一对应三、填空题1、0.8【解析】【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可【详解】解:在RtABO中,根据勾股定理知,A1O= =4(m),在RtABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO=4.8(m),所以AA1=AO-A1O=0.8(米)故答案为0.8【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用2、【解析】【分析】先分别化简负整数指

14、数幂和绝对值,然后再计算【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运算法则准确计算是解题关键3、10,12,14【解析】【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题【详解】解:2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14故答案为10,12,14【考点】本题考查立方根的定义和性质,注意本题答案不唯一求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同4、2【解析】【分析】去分母,将分式方程转化为整式方程,根据分式方程有增

15、根时无解求m的值【详解】解:1,方程两边同时乘以x1,得2x(x1)m,去括号,得2xx1m,移项、合并同类项,得xm1,方程无解,x1,m11,m2,故答案为2【考点】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.5、【解析】【分析】根据全等三角形的性质求出EADCAB,求出DABEAC=50,即可得到BAC的度数【详解】解:ABCADE,EADCAB,EADCADCABCAD,EACDAB,EAB125,CAD25,DABEAC=(12525)50,BAC50+2575故答案为:75【考点】本题考查的

16、是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键四、解答题1、(1);(2);(3)【解析】【分析】(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后进行化简,即可得到答案【详解】解:(1),这个无理数为:;(2)=;(3)=【考点】本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键2、 (1)(2)(3)【解析】【分析】(1)利用四边形内角和进行角的计算即可;(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;(3)利用角平分线得出,结合三

17、角形内角和定理即可得出结果(1)解:四边形的内角和是360,(2),CE平分(3)BE,CE分别平分和,在中,【考点】题目主要考查四边形内角和及平行线的性质,角平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键3、(1)60;(2)-【解析】【分析】(1)根据平行线的性质和平角的定义可得EBC=60,AEF=60,根据角平分线的性质和平行线的性质可得EBD=BDE=DBC=30,再根据三角形内角和定理可求BAD的度数;(2)过点A作AGBC,则BDA=DBC+DAG=DBC+FAD+FAG=DBC+FAD+C=,依此即可求解【详解】解:(1)EFBC,BEF=120,

18、EBC=60,AEF=60,又BD平分EBC,EBD=BDE=DBC=30,又BDA=90,EDA=60,BAD=60;(2)如图2,过点A作AGBC,则BDA=DBC+DAG=DBC+FAD+FAG=DBC+FAD+C=,则FAD+C=-DBC=-ABC=-【考点】考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键4、【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】方程,经检验是分式方程的解,原分式方程的解为【考点】本题考查了解分式方程利用了转化的思想,解分式方程要注意检验5、 (1);(2),1;(3),(答案不唯一)【解析】【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,1的算术平方根是1即可判断;(3)根据运算法则,进行逆运算即可求得无数个满足条件的数(1)解:当时,取算术平方根,不是无理数,继续取算术平方根,不是无理数,继续取算术平方根得,是无理数,所以输出的y值为;(2)解:当,1时,始终输不出y值因为0,1的算术平方根是0,1,一定是有理数;(3)解:4的算术平方根为2,2的算术平方根是,都满足要求【考点】本题考查了算术平方根的计算和无理数的判断,正确理解给出的运算方法是关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1