1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合复习试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,ABC内接于O,A50E是边BC的中点,连接OE并延长,交O于
2、点D,连接BD,则D的大小为()A55B65C60D752、下列各式中表示二次函数的是()Ayx2+By2x2CyDy(x1)2x23、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()AB2C1+D14、下列一元二次方程中,有两个不相等实数根的是( )ABx2+2x+4=0Cx2-x+2=0Dx2-2x=05、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下表时二次函数y=ax2+bx+c的x,y的部分对应值: 线 封 密 内 号学级年名姓 线 封 密 外 则
3、对于该函数的性质的判断中正确的是()A该二次函数有最大值B不等式y1的解集是x0或x2C方程y=ax2+bx+c的两个实数根分别位于x0和2x之间D当x0时,函数值y随x的增大而增大2、下列命题中不正确的命题有()A方程kx2-x-2=0是一元二次方程Bx=1与方程x2=1是同解方程C方程x2=x与方程x=1是同解方程D由(x+1)(x-1)=3可得x+1=3或x-1=33、下列说法中,不正确的是()A平分一条直径的弦必垂直于这条直径B平分一条弧的直线垂直于这条弧所对的弦C弦的垂线必经过这条弦所在圆的圆心D在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心4、下列各组图形中,由左边变
4、成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是()组,进行轴对称变换的是()ABCD5、如图,AB是的直径,C是上一点,E是ABC的内心,延长BE交于点F,连接CF,AF则下列结论正确的是()ABCAEF是等腰直角三角形D若,则第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是 _2、如图,是等边三角形,点D为BC边上一点,以点D为顶点作正方形DEFG,且,连接AE,AG若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为_3、如图,四边形ABCD内接于O,A
5、=125,则C的度数为_4、抛物线是二次函数,则m=_5、若函数图像与x轴的两个交点坐标为和,则_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.2、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点(1)求抛物线的解析式;(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?3、如图,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时
6、,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由4、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)5、端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子
7、、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、B【解析】【分析】连接CD,根据圆内接四边形的性质得到CDB180A130,根据垂径定理得到ODBC,求得BDCD,根据等腰三角形的性质即可得到结论【详解
8、】解:连接CD,A50,CDB180A130,E是边BC的中点,ODBC,BDCD,ODBODCBDC65,故选:B【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识正确理解题意是解题的关键2、B【解析】【分析】利用二次函数的定义逐项判断即可【详解】解:A、yx2+,含有分式,不是二次函数,故此选项错误;B、y2x2,是二次函数,故此选项正确;C、y,含有分式,不是二次函数,故此选项错误;D、y(x1)2x22x+1,是一次函数,故此选项错误故选:B【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键3、B【解析】【分析】 线 封 密 内 号学级
9、年名姓 线 封 密 外 如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-SABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-SABO= 故选:B【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.4、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论【详解】A.此方程判别式 ,方程有两个相等的实数根,不符合题意; B.此方程判别式 方程没有实数根,不符合题意;C.此方程判别式 ,方程没有实数根,不符合题意;D .此方程判别式 ,方程有两个不相等的实数根,符合
10、题意;故答案为: D.【考点】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根5、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y
11、轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数
12、的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上二、多选题1、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a0,即可判断A,D不正确,由图表可直接判断B,C正确【详解】解:当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;二次函数y=ax2+bx+c的对称轴为直线x=1,x1时,y随x的增大而增大,x1时,y随x的增大而减小a0即二次函数有最小值则A,D错误由图表可得:不等式y-1的解集是x0或x2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-x0和2x之间;所
13、以选项B,C正确,故选:BC【考点】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键2、ABCD【解析】【分析】根据方程、方程的解的有关定义以及解方程等知识点逐项判断即可【详解】解:A.方程kx2x2=0当k0时才是一元二次方程,故错误;B.x=1与方程x2=1不是同解方程,故错误;C.方程x2=x与方程x=1不是同解方程,故错误;D.由(x+1)(x1)=3可得x=2,故错误故选:ABCD【考点】本题主要考查了一元二次方程的定义、解一元二次方程、同解方程等知识点,掌握解一元二次方程的方法是解答本题的关键3、ABC【解析】【分析】根据垂径定理的推论,即如
14、果一条直线满足:垂直于弦,平分弦,过圆心,平分优弧,平分劣弧中的两个条件,即可推论出其余三个,逐一进行判断即可【详解】解:A、由于直径也是弦,所以平分一条直径的弦不一定垂直这条直径,选项说法错误,符合题意;B、平分一条弧的直线不一定垂直于这条弧,应该是:过圆心,且平分一条弧的直线垂直于这条弧所对的弦,选项说法错误,符合题意;C、弦的垂线不一定经过这条弦所在的圆心,应该是:弦的垂直平分线必经过这条弦所在的圆心,选 线 封 密 内 号学级年名姓 线 封 密 外 项说法错误,符合题意;D、在一个圆内,平分一条弧和它所对弦的直线必经过这个圆的圆心,选项说法正确,不符合题意;故选ABC【考点】本题考查了
15、垂径定理,解题的关键是掌握垂径定理及其推论4、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴据此即可解答【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化;故答案为:A;C【考点】本题考查了几何变换的定义,注意结合几何变换
16、的定义,分析图形的位置的关系,特别是对应点之间的关系5、BCD【解析】【分析】由圆周角定理可得ACB=AFB=90,再由E是ABC的内心可得EAB+EBA =45,从而得出AEF=45,进一步得到ABC是等腰直角三角形,再由垂径定理得EF=EB,从而可得AE=EB,由中位线定理得AE=2OE=2,最后求出【详解】AB为直径,ACB=AFB=90,CAB+CBA=180,E是ABC的内心,EAB=CAB,EBA=CBA,EAB+EBA=(CAB+CBA)=45,故选项B正确,AEF=EAB+EBA =45,AEF是等腰直角三角形,故选项C正确,AF=EF,AE=EF,EF=EB,AE=EB,故选
17、项A错误,OA=OB,EF=EB,AE=2OE=2,EF=BE=2,故选项D正确, 线 封 密 内 号学级年名姓 线 封 密 外 故选:BCD【考点】本题主要考查了垂径定理,圆周角定理,中位线定理,三角形内心性质,等腰直角三角形,等知识,证明ABC是等腰直角三角形是解题的关键三、填空题1、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x5)cm,根据题意,得,所以,解得,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x2,当x2时,x57
18、,由勾股定理,得直角三角形的斜边长为cm故答案为:cm【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用2、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出【详解】过点A作于M,是等边三角形,在中, 线 封 密 内 号学级年名姓 线 封 密 外 当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,在中,;故答案为8【考点】本题考查了旋转
19、的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键3、55#55度【解析】【分析】根据圆内接四边形的性质得出A+C=180,再求出答案即可【详解】解:四边形ABCD内接于O,A+C=180,A=125,C=180-125=55,故答案为:55【考点】本题考查了圆内接四边形的性质和圆周角定理,能熟记圆内接四边形的对角互补是解此题的关键4、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a0)的函数叫做二次函数,进行求解即可【详解】解:抛物线是二次函数,故答案为:3【考点】本题主要考查了二次函数的定义,解题的关键
20、在于能够熟知二次函数的定义5、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交点坐标为和 线 封 密 内 号学级年名姓 线 封 密 外 由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键四、解答题1、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4
21、m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程2、(1);(2)存在,当时,面积最大为16,此
22、时点点坐标为【解析】【分析】(1)用待定系数法解答便可;(2)设点的坐标为,连结、根据对称性求出点B的坐标,根据得到二次函数关系式,最后配方求解即可【详解】解:(1)抛物线过点,抛物线的对称轴为直线,可设抛物线为抛物线过点,解得抛物线的解析式为,即(2)存在,设点的坐标为,连结、 线 封 密 内 号学级年名姓 线 封 密 外 点A、关于直线对称,且 当时,面积最大为16,此时点点坐标为【考点】本题主要考查了二次函数的图象与性质,待定系数法,三角形面积公式以及二次函数的最值求法,根据图形得出由此得出二次函数关系式是解答此题的关键3、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点
23、、为顶点的四边形是平行四边形,,点坐标为,【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称,当点、在同一直线上时,最小 线 封 密 内 号学级年名姓 线 封 密 外 抛物线解析式为,C(0,-6),设直线解析式为,解得:直线:,故答案为:(3)过点作轴
24、于点,交直线与点,设,则,当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点的四边形是平行四边形设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y=N(,);点坐标为(,),(,),(,) 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键4、见解析.【解析】【分析】根据轴对称图形和旋转对称
25、图形的概念作图即可得【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【考点】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念5、 (1)本次参加抽样调查的居民有600人;(2)见解析;(3).【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解【详解】(1)6010%600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为60018060240120(人),喜欢A类的人数的百分比为100%30%;喜欢C类的人数的百分比为100%20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2,所以小明同时选中花生粽子和红枣粽子的概率【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率也考查了统计图