1、京改版八年级数学上册期末测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个2、如图,与相交于点O,不添加辅助线,判定的依据是
2、()ABCD3、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD4、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4D13,12,55、按如图所示的运算程序,能使输出y值为1的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列关于的方程,不是分式方程的是()ABCD2、如图,已知于点D,现有四个条件:;那么能得出的条件是()ABCD3、在直角坐标系中,等边三角形的顶点A
3、,B的坐标分别是,则顶点C的坐标可能是()ABCD4、下列说法中不正确的有()A有理数和数轴上的点一一对应B不带根号的数一定是有理数C负数没有立方根D是17的平方根5、下列命题中,真命题是()A两个锐角对应相等的两个直角三角形全等B斜边及一锐角对应相等的两个直角三角形全等C两条直角边对应相等的两个直角三角形全等D一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若,则_2、等腰三角形的的两边分别为6和3,则它的第三边为_3、如图,在中,点,都在边上,若,则的长为_.4、如图,已知,是角平分线且,作的垂直平分线交于
4、点F,作,则周长为_5、若的整数部分是,小数部分是,则_四、解答题(5小题,每小题8分,共计40分)1、已知:如图,求证:2、已知的三边长分别为,(1)若,求的取值范围;(2)在(1)的条件下,若为奇数,试判断的形状,并说明理由3、已知a2,b2,求下列式子的值:(1)a23abb2;(2)(a1)(b1)4、解答下列各题:(1)解方程:(2)解不等式组:,并把解集表示在数轴上5、如图,在四边形ABCD中,BAD90,点E在AC上,ECEDDA求CAB的度数-参考答案-一、单选题1、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考查了无理数,无
5、理数是无限不循环小数,有理数是有限小数或无限循环小数2、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键3、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+B
6、AC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合
7、考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键4、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形5、D【解析】【分析】逐项代入,寻找正确答案即可
8、.【详解】解:A选项满足mn,则y=2m+1=3; B选项不满足mn,则y=2n-1=-1; C选项满足mn,则y=2m+1=3; D选项不满足mn,则y=2n-1=1; 故答案为D;【考点】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.二、多选题1、ABC【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断【详解】解:A、分母中不含未知数,不是分式方程,符合题意;B、分母中不含未知数,不是分式方程,符合题意;C、分母中不含未知数,不是分式方程,符合题意;D、分母中含未知数,是分式方程,不符合题意;故选:ABC【考点】判断一个方程是
9、否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母)2、ABC【解析】【分析】根据全等三角形的判定方法,即可求解【详解】解:, ,A、若,可用角角边证得,故本选项符合题意;B、若,可用角角边证得,故本选项符合题意;C、若,可用边角边证得,故本选项符合题意;D、若,是角角角,不能证得,故本选项不符合题意;故选:ABC【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键3、AC【解析】【分析】根据等边三角形的性质得到BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使
10、BC=AB,AD=BD=1,利用勾股定理求出CD的长,由此得到答案【详解】解:等边三角形的顶点A,B的坐标分别是,BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,顶点C的坐标可能是或,故选:AC【考点】此题考查等边三角形的性质,平面直角坐标系中点的坐标,勾股定理,熟记等边三角形的性质是解题的关键4、ABC【解析】【分析】根据实数与数轴,有理数与无理数的定义,平方根和立方根的定义进行逐一判断即可【详解】解:A、有理数和数轴上的点不一一对应,数轴上的点也可以表示无理数,故该选项符合题意;B. 不带根号的数不一定是有理数,例如是无理数,故该选项符合题
11、意;C. 负数有立方根,故该选项符合题意;D. 是17的平方根,故此选项不符合题意;故选ABC【考点】本题主要考查了实数与数轴,有理数与无理数的定义,平方根和立方根的定义,解题的关键在于能够熟练掌握相关知识进行求解5、BCD【解析】【分析】判定两个直角三角形全等的方法有:SSS、AAS、ASA、HL四种,对每个选项依次判定解答【详解】解:A、两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等;故本项错误; B、斜边及一锐角对应相等,构成了AAS,能判定全等;故本项正确; C、两条直角边对应相等,构成了SAS,能判定全等;故本项正确; D、一条直角边和另一条直
12、角边上的中线对应相等,可得另一直角边也相等,构成了SAS,能判定全等;故本项正确; 故选BCD【考点】本题主要考查两个直角三角形全等的判定,解决本题的关键是要熟练掌握全等三角形的判定.三、填空题1、1或-2【解析】【分析】根据除0外的数的任何次幂都是1及1的任何次幂都是1,所以当,和时解得或即可得解此题【详解】解:,可分以下三种情况讨论:时,且为偶数时,时, 时,1为奇数,的情况不存在,当时,的情况存在,综上所述,符合条件的a的值为:1,-2,故答案为:1或-2【考点】本题考查了乘方性质的应用,解题的关键是了解乘方是1的数的所有可能情况2、6【解析】【分析】题目给出等腰三角形有两条边长为3和6
13、,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:由题意得:当腰为3时,则第三边也为腰,为3,此时3+36故以3,3,6不能构成三角形;当腰为6时,则第三边也为腰,为6,此时3+66,故以3,6,6可构成三角形故答案为:6【考点】本题考查了等腰三角形的定义和三角形的三边关系,已知条件没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键3、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为ABC是等腰三角形,所以有AB=AC,BAD=CA
14、E,ABD=ACE,所以ABDACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.4、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键5、【解析】【分析】先确定出的范围,即可推出a、b的值,把a、b的值代入求出即可【详解】解:,故
15、答案为:【考点】考查了估算无理数的大,解此题的关键是确定的范围89,得出a,b的值四、解答题1、见解析【解析】【分析】连接AC,首先根据“HL”判定ABCCDA,得到AD=BC,再证ADOCBO,则可得到需证的结论.【详解】证明:连接AC.在RtABC和RtCDA中,ABCCDA.AD=BC.,AD0=CB0=90.又AOD=COB,ADOCBO.【考点】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS2、(1)1c5;(2)ABC为等腰三角形【解析】【分析】(1)根据三角形的三边关系定理可得3-2
16、c3+2,再解不等式即可;(2)根据c的范围可直接得到答案【详解】解:(1)根据三角形的三边关系定理可得3-2c3+2,即1c5;(2)第三边c为奇数,c=3,a=2,b=3,b=c,ABC为等腰三角形【考点】此题主要考查了三角形的三边关系及等腰三角形的判断,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边3、(1)26;(2)3【解析】【分析】(1)根据完全平方公式的形式对a23abb2变形为,然后代入求值即可;(2)化简(a1)(b1)得,然后代入求值即可【详解】解:(1)a23abb2=,a2,b2,代入得,原式= ;(2)(a1)(b1)=,a2,b2,
17、代入得,原式= 【考点】此题考查了二次根式代数求值,解题的关键是先根据整式的乘法运算法则化简原式4、(1)方程无解;(2),数轴见解析【解析】【分析】(1)解分式方程,先去分母,然后去括号,移项,合并同类项,系数化1,注意结果要进行检验;(2)解一元一次不等式组,分别求出各不等式的解集,再在数轴上表示出来即可【详解】解:(1)去分母得:,去括号得:,移项合并同类项得:,系数化为1得:,经检验时,则为原方程的增根,原分式方程无解 (2),由得,由得,不等式组的解集为:,在数轴上表示如图:【考点】本题考查解分式方程和解一元一次不等式组,掌握运算顺序和计算法则正确计算是解题关键5、【解析】【分析】根据等腰三角形的性质,等边对等角,又利用平行线的性质可得角度之间的关系,从而可以求解【详解】DECE,ECDCDEDEA是CDE的外角,DEAECDCDE2ECDDEAD,DEADAE,DAE2ECD,CABDCA,DAE2CABBAD90,故答案为:【考点】本题主要考查等腰三角形和平行线的性质,利用等腰三角形和平行线的性质得到角之间的关系是解题的关键