1、京改版八年级数学上册期中模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、四个数0,1,中,无理数的是()AB1CD02、下列说法正确的是()A4是(4)2的算术平方根B4是(4)2的算术平
2、方根C的平方根是2D2是的一个平方根3、下列分式,中,最简分式有()A1个B2个C3个D4个4、下列二次根式中,与是同类二次根式的是()ABCD5、下列说法正确的有()无限小数不一定是无理数;无理数一定是无限小数;带根号的数不一定是无理数;不带根号的数一定是有理数ABCD二、多选题(5小题,每小题4分,共计20分)1、下列说法正确的有()A带根号的数都是无理数;B的平方根是-2;C-8的立方根是-2;D无理数都是无限小数2、下列计算不正确的是()A(1)01BCD用科学记数法表示0.00001081.081053、下列运算中,正确的是()ABCD4、在下列分式中,不能再约分化简的分式有()AB
3、CD5、下列变形不正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、分式的值比分式的值大3,则x为_2、如果的平方根是,则_3、全民齐心协力共建共享文明城区建设某服装加工厂计划为环卫工人生产1200套冬季工作服,在加工完480套后,工厂引进了新设备,结果工作效率比原计划提高了20%,结果共用54天完成了全部生产任务若设该加工厂原计划每天加工x套冬季工作服,则根据题意列方程为_4、如图所示,直径为个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是_5、化简:_四、解答题(5小题,每小题8分,共计40分)1、解分式方程:2、计算:
4、(1)(3)0()2+(1)2n(2)(m2)n(mn)3mn2(3)x(x2x1)(4)(3a)2a4+(2a2)3(5)(9)3()3()33、阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数因此,的小数部分不可能全部地写出来,但可以用来表示的小数部分理由:因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:已知:的小数部分为,的小数部分为b,计算的值4、计算(1)(2)5、计算-参考答案-一、单选题1、A【解析】【分析】分别根据无理数、有理数的定义即可判定选择项【详解】0,1,是有理数,是无理数,故选A【考点】此题主要考查了无理数的定义,注意带根号的要开不
5、尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式2、D【解析】【分析】根据算术平方根、平方根的定义逐项判断即可得【详解】A、,16的算术平方根是4,则此项错误,不符题意;B、,16的算术平方根是4,则此项错误,不符题意;C、,4的平方根是,则此项错误,不符题意;D、,4的平方根是,则是的一个平方根,此项正确,符合题意;故选:D【考点】本题考查了算术平方根、平方根,掌握理解定义是解题关键3、B【解析】【分析】根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简
6、分式,故原式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键4、A【解析】【分析】先将各式化为最简二次根式,再利用同类二次根式定义判断即可【详解】解:A、原式,符合题意;B、原式,不符合题意;C、原式,不符合题意;D、原式不能化简,不符合题意故选:A【考点】此题考查了同类二次根式,几个二次根式化为最简二次根式后,被开方数相同的即为同类二次根式5、A【解析】【分析】根据无理数是无限不循环小数进行判断即可【详解】解:无限小数不一定都是无理数,如是有理数,故正确;无理数一定是无限小数,故正确;带根号的数不一定都是无理数,如是有理数,故正确;不带
7、根号的数不一定是有理数,如是无理数,故错误;故选:A【考点】本题考查的是实数的概念,掌握实数的分类、正确区分有理数和无理数是解题的关键,注意无理数是无限不循环小数二、多选题1、CD【解析】【分析】分别根据无理数、平方根、立方根的定义对各小题进行逐一判断即可【详解】A、无限不循环小数是无理数,故该选项错误,不符合题意;B、的平方根是,故该选项错误,不符合题意;C、-8的立方根是-2,故该选项正确,符合题意;D、无理数是无限不循环小数,故该项说法正确,符合题意; 故选:C、D【考点】此题考查了无理数、平方根、立方根的定义,掌握无理数、平方根、立方根的定义是解题的关键2、ABCD【解析】【分析】根据
8、负整数指数幂和科学计算法的计算方法进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、用科学记数法表示,故此选项符合题意;故选ABCD【考点】本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则3、CD【解析】【分析】根据合并同类项,完全平方公式,分式的乘除及分式的加减运算进行计算,再判断即可作答【详解】不能再合并同类项了,A选项错误,不符合题意;,B选项错误,不符合题意;,C选项正确,符合题意;,D选项正确,符合题意;故选:CD【考点】本题考查了合并同类项,完全平方公式,分式的乘除及分式的加减运算,熟练掌握运算法则
9、是解题的关键4、BC【解析】【分析】根据最简分式的定义:如果一个分式中没有可约的因式,则为最简分式,据此判断即可【详解】解:A、,不是最简分式,可以再约分,不合题意;B、,是最简分式,不能再约分,符合题意;C、,是最简分式,不能再约分,符合题意;D、,不是最简分式,可以再约分,不合题意;故选:BC【考点】本题考查了最简分式的概念,熟记定义是解本题的关键5、ABC【解析】【分析】根据分式的基本性质求解即可,在分式的变形中,要注意符号法则,即分式的分子、分母及分式的符号,只有同时改变两个其值才不变【详解】解:A ,故不正确;B ,故不正确; C ,故不正确; D,故正确;故选ABC【考点】本题考查
10、了分式的基本性质,把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变三、填空题1、1【解析】【分析】先根据题意得出方程,求出方程的解,再进行检验,最后得出答案即可【详解】根据题意得:-=3,方程两边都乘以x-2得:-(3-x)-1=3(x-2),解得:x=1,检验:把x=1代入x-20,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大3【考点】本题考查了解分式方程,能求出分式方程的解是解此题的关键2、81【解析】【分析】根据平方根的定义即可求解.【详解】9的平方根为,=9,所以a=81【考点】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.3、【解析】【分析
11、】设该加工厂原计划每天加工x套冬季工作服,则实际每天加工套,则按原计划的效率加工天,按提高后的工作效率加工天,从而可得答案【详解】解:设该加工厂原计划每天加工x套冬季工作服,则提高效率后每天加工套, 故答案为:【考点】本题考查的是分式方程的应用,掌握利用分式方程解决工作量问题是解题的关键4、-【解析】【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案【详解】由题意可得:圆的周长为,直径为单位1的硬币从原点处沿着数轴负半轴无滑动的逆时针滚动一周到达A点,A点表示的数是:-故答案为:-【考点】此题考查了数轴的特点及圆的周长公式,正确得出圆的周长是解题的关键5、【解析】【分析】根据
12、分式的运算法则化简,即可求解【详解】故答案为:【考点】此题主要考查分式的混合运算,解题的关键是熟知其运算法则四、解答题1、【解析】【分析】两边同乘分式方程的最简公分母,将分式方程转化为整式方程,再解整式方程,然后检验即可【详解】解:两边同乘,得:3x+x+24,解得:,检验,当时,是原方程的解【考点】本题考查了解分式方程,找到最简公分母将分式方程转化为整式方程是解题的关键2、 (1)-7;(2)mn+5n3;(3)x3x2x;(4)a6;(5)8.【解析】【分析】(1)根据零指数幂、负整数指数幂可以解答本题;(2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题
13、;(4)根据积的乘方和同底数幂的乘法可以解答本题;(5)根据幂的乘方可以解答本题【详解】(1)(3)0()2+(1)2n19+17;(2)(m2)n(mn)3mn2m2nm3n3mn2mn+5n3;(3)x(x2x1)x3x2x;(4)(3a)2a4+(2a2)39a2a4+(8a6)9a6+(8a6)a6;(5)(9)3()3()38【考点】本题考查整式的混合运算、幂的乘方、负整数指数幂等,解答本题的关键是明确整式混合运算的计算方法3、1【解析】【分析】先估算2+的大小,算出2+的整数部分,再求出小数部分a,同理求出5的小数部分b,再进行求解【详解】解:23,42+5,2+的整数部分为4,2+的小数部分a=2+-4=-3-225-35-的整数部分为2,5-的小数部分b=5-2=3-a+b=+3-=1【考点】此题主要考查实数的估算,解题的关键是先估算出的大小4、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法【详解】解:(1)=;(2)=0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则5、2【解析】【分析】先根据平方差公式、立方根、算术平方根进行化简,再计算即可【详解】解: =2-1-2+3=2【考点】本题考查了实数的运算解题的关键是熟练掌握平方差公式、立方根、算术平方根等考点的运算