1、京改版八年级数学上册期末综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列黑体字中,属于轴对称图形的是()A善B勤C健D朴2、关于x的方程2+有增根,则k的值为()A3B3C3D23
2、、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定4、如图,在ABC中,AC5,AB7,AD平分BAC,DEAC,DE2,则ABC的面积为()A14B12C10D75、如图,在ABC中,ABC90,AB3,BC1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为()A2.1B1CD1二、多选题(5小题,每小题4分,共计20分)1、在中,与的平分线交于点I,过点I作交于点D,交于点E,且,则下列说法正确的是()A和是等腰三角形BC的周长是8D2、若等腰三角形一腰上的高与另一
3、腰的夹角的度数为,则顶角的度数是()ABCD3、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABDACE,添加一个条件可行的是()AAD=AEBBD=CECBE=CDDBAD=CAE4、如图,在中,的垂直平分线交于点D,交于点E,下列结论正确的是()A平分B的周长等于CD点D是线段的中点5、下列运算正确的是()A = 5B = 1C = 3D= 6第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、化简:_2、数学家发明了一个魔术盒,当任意 “数对 ” 进入其中时,会得到一个新的数:,例如把放入其中,就会得到,现将 “数对”放入其中后,得到的数是_3、如图,
4、一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_米4、若,则_5、请写一个比小的无理数.答:_四、解答题(5小题,每小题8分,共计40分)1、如图,在ABC中,ACB=90,A=30,AB的垂直平分线分别交AB和AC于点D,E. (1)求证:AE=2CE;(2)连接CD,请判断BCD的形状,并说明理由.2、已知:如图,求证:3、如图,在ABC和DEB中,ACBE,C90,ABDE,点D为BC的中点, (1)求证:ABCDEB (2)连结A
5、E,若BC4,直接写出AE的长4、在四边形ABCD中,(1)如图,若,求出的度数;(2)如图,若的角平分线交AB于点E,且,求出的度数;(3)如图,若和的角平分线交于点E,求出的度数5、计算: -参考答案-一、单选题1、A【解析】【分析】轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据轴对称图形的定义可得答案.【详解】解:由轴对称图形的定义可得:善是轴对称图形,勤,健,朴三个字都不是轴对称图形,故符合题意,不符合题意,故选:【考点】本题考查的是轴对称图形的含义,轴对称图形的识别,掌握定义,确定对称轴是解题的关键.2、D【解析】【分析】根据增根的定义
6、可求出x的值,把方程去分母后,再把求得的x的值代入计算即可.【详解】解:原方程有增根,最简公分母x30,解得x3,方程两边都乘(x3),得:x12(x3)+k,当x3时,k2,符合题意,故选D【考点】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程3、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,
7、a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键4、B【解析】【分析】过点D作DFAB于点F,利用角平分线的性质得出,将的面积表示为面积之和,分别以AB为底,DF为高,AC为底,DE为高,计算面积即可求得【详解】过点D作DFAB于点F,AD平分BAC,DEAC,DFAB,, ,故选:B【考点】本题考查角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键5、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论【详解】ABC中,B=90,AB=3,BC=1,AC=A点表示1,M点
8、表示1故选:B【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键二、多选题1、ACD【解析】【分析】根据角平线的定义和平行线的性质,可得DIB=DBI,EIC=ECI,从而证得和是等腰三角形,得到A正确;根据题意,无法得到,根据等腰三角形的性质,可得DE =BD+CE,从而得到的周长AD+AE+DE=AD+AE+BD+CE=AB+AC,得到C正确;再根据角平分线的定义,三角形的内角和定理,可判断D正确,即可求解【详解】解:BI与CI分别平分与 ,DBI=CBI,ECI=BCI,DIB=CBI,EIC=BCI,DIB=DB
9、I,EIC=ECI,BD=ID,CE=IE,和是等腰三角形,故A正确;根据题意,无法得到,故B错误;BD=ID,CE=IE,DE=DI+EI=BD+CE,的周长AD+AE+DE=AD+AE+BD+CE=AB+AC=5+3=8,故C正确;,ABC+ACB=180-A=130,BI与CI分别平分与 ,CBI+BCI= ,故D正确故选:ACD【考点】本题主要考查了等腰三角形的判定和性质,平行线的性质,角平分线的定义,三角形的内角和定理,熟练掌握相关知识点是解题的关键2、BC【解析】【分析】本题要分情况讨论当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:此题要分情况讨论:如图,当
10、等腰三角形的顶角是钝角时, 由题意得: 根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90+20=110; 如图,当等腰三角形的顶角是锐角时,由题意得: 故顶角是90-20=70 故顶角的度数为110或70 故选:【考点】此题考查了等腰三角形的性质,注意此类题的两种情况其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和3、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABAC,BC,当ADAE时,ADEAED,ADEBBAD,AEDCCAE,BADCAE,然后根据S
11、AS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中4、ABC【解析】【分析】由在ABC中,ABAC,A36,根据等边对等角与三角形内角和定理,即可求得ABC与C的度数,又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得ADBD,继而求得ABD的度数,则可知BD平
12、分ABC;可得BCD的周长等于ABBC,又可求得BDC的度数,求得ADBDBC,则可求得答案;注意排除法在解选择题中的应用【详解】解:在ABC中,ABAC,A36,ABCC72,AB的垂直平分线是DE,ADBD,ABDA36,DBCABCABD723636ABD,BD平分ABC,故A正确;BCD的周长为:BCCDBDBCCDADBCACBCAB,故B正确;DBC36,C72,BDC180DBCC72,BDCC,BDBC,ADBDBC,故C正确;BDCD,ADCD,点D不是线段AC的中点,故D错误故选:ABC【考点】此题考查了等腰三角形的性质,线段垂直平分线的性质以及三角形内角和定理等知识此题综
13、合性较强,但难度不大,解题的关键是注意数形结合思想的应用,注意等腰三角形的性质与等量代换5、ACD【解析】【分析】分别根据二次根式的性质化简、二次根式的加减法则、二次根式的除法和乘法法则逐项判断即得答案【详解】解:A、,故本选项符合题意;B、,故本选项不符合题意;C、,故本选项符合题意;D、,故本选项符合题意故选ACD【考点】本题考查了二次根式的运算和利用二次根式的性质化简,属于基础题型,熟练掌握二次根式的运算法则是解题的关键三、填空题1、【解析】【分析】根据分式的运算法则化简,即可求解【详解】故答案为:【考点】此题主要考查分式的混合运算,解题的关键是熟知其运算法则2、12【解析】【分析】根据
14、题中“数对”的新定义,求出所求即可【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12【考点】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键3、0.8【解析】【分析】梯子的长是不变的,只要利用勾股定理解出梯子滑动前和滑动后的所构成的两直角三角形,分别得出AO,A1O的长即可【详解】解:在RtABO中,根据勾股定理知,A1O= =4(m),在RtABO中,由题意可得:BO=1.4(m),根据勾股定理知,AO=4.8(m),所以AA1=AO-A1O=0.8(米)故答案为0.8【考点】本题考查勾股定理的应用,解题关键是从题中抽象出勾股定理这一数学模型,画出
15、准确的示意图领会数形结合的思想的应用4、【解析】【分析】根据实数的性质即可求解【详解】,m0,m=5,故答案为:5【考点】此题主要考查实数的性质,解题的关键是熟知实数的运算性质5、(答案不唯一)【解析】【分析】根据无理数的定义填空即可.【详解】解:比小的无理数如:(答案不唯一),故答案为(答案不唯一).【考点】本题考查了无理数的定义及比较无理数大小,比较基础四、解答题1、见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得ABE=A;结合三角形外角的性质可得BEC的度数,再在RtBCE中结合含30角的直角三角形的性质,即可证明第(1)问的结论;
16、(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到ABC=60,至此不难判断BCD的形状【详解】(1)证明:连结BE,如图DE是AB的垂直平分线,AEBE,ABEA30,CBEABCABE30,在RtBCE中,BE2CE,AE2CE.(2)解:BCD是等边三角形理由如下:DE垂直平分AB,D为AB的中点ACB90,CDBD.又ABC60,BCD是等边三角形【考点】此题考查了线段垂直平分线的性质、30角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形
17、斜边的中线等于斜边的一半是解(2)的关键,2、见解析【解析】【分析】连接AC,首先根据“HL”判定ABCCDA,得到AD=BC,再证ADOCBO,则可得到需证的结论.【详解】证明:连接AC.在RtABC和RtCDA中,ABCCDA.AD=BC.,AD0=CB0=90.又AOD=COB,ADOCBO.【考点】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS3、(1)见解析;(2)【解析】【分析】(1)根据平行可得DBE90,再由HL定理证明直角三角形全等即可;(2)构造,利用矩形性质和勾股定理即可求出
18、AE长【详解】(1)ACBE,CDBE180DBE180C 1809090ABC和DEB都是直角三角形点D为BC的中点,ACDBABDE,RtABCRtDEB(HL) (2)过程如下:连接AE、过A点作AHBE,C90,DBE90,AH=BC=4, ,在中,【考点】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH=BC,从而利用勾股定理求AE4、 (1)(2)(3)【解析】【分析】(1)利用四边形内角和进行角的计算即可;(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;(3)利用角平分线得出,结合三角形内角和定理即可得出结果(1)解:四边形的内角和是360,(2),CE平分(3)BE,CE分别平分和,在中,【考点】题目主要考查四边形内角和及平行线的性质,角平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键5、【解析】【分析】根据实数的混合运算法则进行计算即可【详解】解:原式=【考点】本题考查实数的混合运算,应用到负指数幂、零指数幂、绝对值、算数平方根等知识,掌握这些知识为解题关键